
Chapter 7
Tracking Animals in a Dynamic
Environment: Remote Sensing Image
Time Series

Mathieu Basille, Ferdinando Urbano, Pierre Racine,
Valerio Capecchi and Francesca Cagnacci

Abstract This chapter looks into the spatiotemporal dimension of both animal
tracking data sets and the dynamic environmental data that can be associated with
them. Typically, these geographic layers derive from remote sensing measurements,
commonly those collected by sensors deployed on earth-orbiting satellites, which
can be updated on a monthly, weekly or even daily basis. The modelling potential for
integrating these two levels of ecological complexity (animal movement and envi-
ronmental variability) is huge and comes from the possibility to investigate processes
as they build up, i.e. in a full dynamic framework. This chapter’s exercise will
describe how to integrate dynamic environmental data in the spatial database and join
to animal locations one of the most used indices for ecological productivity and
phenology, the normalised difference vegetation index (NDVI) derived from
MODIS. The exercise is based on the database built so far in Chaps. 2, 3, 4, 5 and 6.

M. Basille (&)
Fort Lauderdale Research and Education Center, University of Florida,
3205 College Avenue, Fort Lauderdale, FL 33314, USA
e-mail: basille@ase-research.org

F. Urbano
Università Iuav di Venezia, Santa Croce 191 Tolentini, 30135 Venice, Italy
e-mail: ferdi.urbano@gmail.com

P. Racine
Centre for Forest Research, University Laval, Pavillon Abitibi-Price,
2405 de la Terrasse, Bureau 1122, Quebec City, QC G1V 0A6, Canada
e-mail: pierre.racine@sbf.ulaval.ca

V. Capecchi
Istituto di Biometeorologia, Consiglio Nazionale delle Ricerche,
Via Madonna del piano 10 50019 Sesto Fiorentino, Firenze, Italy
e-mail: capecchi@lamma.rete.toscana.it

F. Cagnacci
Biodiversity and Molecular Ecology Department, Research and Innovation Centre,
Fondazione Edmund Mach, via E. Mach 1, 38010 S.Michele all’Adige, TN, Italy
e-mail: francesca.cagnacci@fmach.it

F. Urbano and F. Cagnacci (eds.), Spatial Database for GPS Wildlife Tracking Data,
DOI: 10.1007/978-3-319-03743-1_7, � Springer International Publishing Switzerland 2014

95

http://dx.doi.org/10.1007/978-3-319-03743-1_2
http://dx.doi.org/10.1007/978-3-319-03743-1_3
http://dx.doi.org/10.1007/978-3-319-03743-1_4
http://dx.doi.org/10.1007/978-3-319-03743-1_5
http://dx.doi.org/10.1007/978-3-319-03743-1_6

Keywords NDVI � Raster time series � Spatial database � Spatiotemporal
intersection

Introduction

The advancement in movement ecology from a data perspective can reach its full
potential only by combining the technology of animal tracking with the technology
of other environmental sensing programmes (Cagnacci et al. 2010). Ecology is
fundamentally spatial, and animal ecology is obviously no exception (Turchin
1998). Any scientific question in animal ecology cannot overlook its spatial
dimension, and in particular the dynamic interaction between individual animals or
populations, and the environment in which the ecological processes occur.
Movement provides the mechanistic link to explain this complex ecosystem
interaction, as the movement path is dynamically determined by external factors,
through their effect on the individual’s state and the life history characteristics of
an animal (Nathan et al. 2008). Therefore, most modelling approaches for animal
movement include environmental factors as explanatory variables. As illustrated in
earlier portions of this book, this technically implies the intersection of animal
locations with environmental layers, in order to extract the information about the
environment that is embedded in spatial coordinates. It appears very clear at this
stage, though, that animal locations are not only spatial, but are also fully defined
by spatial and temporal coordinates (as given by the acquisition time).

Logically, the same temporal definition also applies to environmental layers.
Some characteristics of the landscape, such as land cover or road networks, can be
considered static over a large period of time (of the order of several years), and
these static environmental layers are commonly intersected with animal locations
to infer habitat use and selection by animals (e.g. Resource Selection Functions,
RSF, Manly et al. 2002). However, many characteristics relevant to wildlife, such
as vegetation biomass or road traffic, are indeed subject to temporal variability
(of the order of hours to weeks) in the landscape and would be better represented
by dynamic layers that correspond closely to the conditions actually encountered
by an animal moving across the landscape (Moorcroft 2012). In this case, using
static environmental layers directly limits the potential of wildlife tracking data,
reduces the power of inference of statistical models and sometimes even intro-
duces sources of bias (Basille et al. 2013).

Nowadays, satellite-based remote sensing can provide dynamic global coverage
of medium-resolution images that can be used to compute a large number of
environmental parameters very useful to wildlife studies. Through remote sensing,
it is possible to acquire spatial time series which can then be linked to animal
locations, fully exploiting the spatiotemporal nature of wildlife tracking data.
Numerous satellites and other sensor networks can now provide information on
resources on a monthly, weekly or even daily basis, which can be used as
explanatory variables in statistical models (e.g. Pettorelli et al. 2006) or to

96 M. Basille et al.

parameterise Bayesian inferences or mechanistic models. One of the most
commonly used satellite-derived environmental time series is the normalised
difference vegetation index (NDVI) but other examples include data sets on ocean
primary productivity, surface temperature or salinity, all available in equally fine
spatial and temporal scales (McClain 2009), and, in North America, snow depth
data at daily scales (SNODAS, at 1-km resolution), spatial temperature and pre-
cipitation at monthly scales (PRISM data model, at 1-km resolution), and mete-
orological data on wind and pressure (ESRL1). Snow cover, NDVI and sea surface
temperature are some examples of indices that can be used as explanatory vari-
ables in statistical models (e.g. Pettorelli et al. 2006) or to parameterise Bayesian
inferences or mechanistic models. Moreover, there are user-friendly spatial tools to
acquire (LPDAAC NASA website 20082) and process (e.g. Marine Geospatial
Ecology Tools—MGET3, a plugin for the proprietary software ESRI ArcGIS and
the free Movebank tool Env-DATA System4) data from the moderate-resolution
imaging spectroradiometer (MODIS), a major provider of NDVI.

The main shortcoming of such remote sensing layers is the relatively low
spatial resolution (e.g. 250 m for MODIS, e.g. Cracknell 1997; 1 km for SPOT
vegetation, e.g. Maisongrande et al. 2004), which does not fit the current average
bias of wildlife tracking GPS locations (less than 20 m, see Frair et al. 2010 for a
review), thus potentially leading to a spatial mismatch between the animal-based
information and the environmental layers (note that the resolution can still be
perfectly fine, depending on the overall spatial variability and the species and
biological process under study). Yet, this is much more desirable than using static
layers when the temporal variability is an essential component of the ecological
inference (Basille et al. 2013). Higher resolution images and new types of infor-
mation (e.g. forest structure) are presently provided by new types of sensors, such
as those from LIDAR, radar or hyper-spectral remote sensing technology. How-
ever, the use of these images for intersection with wildlife tracking data sets is still
limited by the high cost of source data, including direct costs such as flights of
aircrafts, that restricts the collection of comprehensive high-resolution time series.
In the case of animals that move over large distances (regions, nations, continents),
these limitations are even greater. Few software packages provide the function-
alities to handle time series of images easily (Eerens et al. 2014), while at the same
time offering a complete set of the tools required by movement ecology in general
and tracking data in particular.

In this chapter, we discuss the integration in the spatial database of one of the most
used indices for ecological productivity and phenology, i.e. NDVI, derived from
MODIS images. The intersection of NDVI images with GPS locations requires a

1 http://www.esrl.noaa.gov/.
2 https://lpdaac.usgs.gov/.
3 http://mgel.env.duke.edu/mget.
4 http://www.movebank.org/node/6607.

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 97

http://www.esrl.noaa.gov/
https://lpdaac.usgs.gov/
http://mgel.env.duke.edu/mget
http://www.movebank.org/node/6607/

system that is able to handle large amounts of data and explicitly manage both spatial
and temporal dimensions, which makes PostGIS an ideal candidate for the task.

MODIS NDVI Data Series

The MODIS instrument operates on NASA’s Terra and Aqua spacecraft. The
instrument views the entire earth’s surface every 1–2 days and captures data in 36
spectral bands ranging in wavelengths from 0.4 to 14.4 lm and at varying spatial
resolutions (250 m, 500 m and 1 km). The global MODIS vegetation indices
(MODIS 13 products, MODIS 1999) are designed to provide consistent spatial and
temporal comparisons of vegetation conditions. Red and near-infrared reflec-
tances, centred at 645 and 858 nm, respectively, are used to determine vegetation
indices, including the well-known NDVI, at daily, 8 d, 16 d and monthly scales.
This index is calculated by contrasting intense chlorophyll pigment absorption in
the red against the high reflectance of leaf mesophyll in the near infrared. It is a
proxy of plant photosynthetic activity and has been found to be highly related to
the green leaf area index (LAI) and to the fraction of photosynthetically active
radiation absorbed by vegetation (FAPAR; see for instance Bannari et al. 1995).

Past studies have demonstrated the potential of using NDVI data to study
vegetation dynamics (Townshend and Justice 1986; Verhoef et al. 1996). More
recently, several applications have been developed using MODIS NDVI data such
as land cover change detection (Lunetta et al. 2006), monitoring forest phenophases
(Yu and Zhuang 2006), modelling wheat yield (Moriondo et al. 2007) and other
applications in forest and agricultural sciences. However, the utility of the MODIS
NDVI data products is limited by the availability of high-quality data (e.g. cloud
free), and several processing steps are required before using the data: acquisition
via Web facilities, reprojection from the native sinusoidal projection to a standard
latitude–longitude format, eventually the mosaicking of two or more tiles into a
single tile. A number of processing techniques to ‘smooth’ the data and obtain a
cleaned (no clouds) time series of NDVI imagery have also been implemented.
These kinds of processes are usually based on a set of ancillary information on the
data quality of each pixel that is provided together with MODIS NDVI.

In the framework of the present project, a simple R5 procedure has been adapted
in order to download, reproject and mosaic the NDVI data. The procedure is
flexible and can be modified to work with other MODIS data (snow, land surface
temperature, etc.). It is dependent on the MODIS Reprojection Tool (MRT), a set
of tools developed by the NASA to manipulate MODIS files. MRT enables users
to read data files in the native HDF-EOS format, specify a geographic subset or
specific science data sets as input to processing, perform geographic

5 http://www.r-project.org/.

98 M. Basille et al.

http://www.r-project.org/

transformation to a different coordinate system/cartographic projection and write
the output to a GDAL-compatible file format.

A preliminary visual examination of the available NDVI images indicates that
they may contain a variable number of pixels with erroneous values. Several
techniques have been developed to remove these pseudo-hikes and drops in the time
series (probably due to clouds) and substitute the missing data with a reliable value.
In the present case, we applied a very simple but efficient procedure, first developed
and described by Escadafal et al. (2001), for the 10-day NOAA-AVHRR NDVI
images. The procedure was also applied in other similar cases in the European
context (Maselli et al. 2006) with the 10-day NOAA-AVHRR and SPOT-VGT
NDVI images. Here, we adapted the procedure to work with the 16-day MODIS
images. The procedure simply consists of a preliminary filtering in order to remove
isolated pixels with anomalous NDVI values and replace them with local (5-point)
averages. The final result of such a procedure is shown in Fig. 7.1, which displays
NDVI values extracted before and after the smoothing for a location in the
municipality of Terlago (46.10�N, 11.05�E, northern Italy). Note that, for conve-
nience purposes, NDVI values have been multiplied by 10,000 to be stored as
integers with a maximum value of 10,000 (you will have to keep this in mind when
presenting NDVI values).

Dealing with Raster Time Series

Raster time series are quite common from medium- and low-resolution data sets
generated by satellites that record information at the same location on earth at
regular time intervals. In this case, each pixel has both a spatial and a temporal
reference. In this exercise, you integrate an NDVI data set of 92 MODIS images
covering the period 2005–2008 (spatial resolution of 1 km and temporal resolution
of 16 days). In this example, you will use the env_data schema to store raster time
series, in order to keep it transparent to the user: all environmental data (static or
dynamic) are in this schema. However, over larger amounts of data, it might be
useful to store raster time series in a different schema to support an easier and more
efficient backup procedure.

When you import a raster image using raster2pgsql, a new record is added in
the target table for each raster, including one for each tile if the raster was tiled
(see Chap. 6). At this point, each record does not consider time yet and is thus
simply a spatial object. To transform each record into a spatiotemporal object, you
must add a field with the timestamp of the data acquisition, or, better, the time
range covered by the data if it is related to a period. The time associated with each
raster (and each tile) can usually be derived from the name of the file, where this
information is typically embedded. In the case of MODIS composite over 16 days,
this is the first day of the 16-day period associated with the image in the form
‘MODIS_NDVI_yyyy_mm_dd.tif’ where yyyy is the year, mm the month, and dd
the day.

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 99

http://dx.doi.org/10.1007/978-3-319-03743-1_6

Time Ranges in PostgreSQL

A new data type was introduced in PostgreSQL 9.2 to facilitate storage and
manipulation of ranges, i.e. an interval of values with a beginning and an end. The
range type6, stored in a single column, eliminates the need to store the beginning
and end values in two separate columns and allows for much simpler comparisons
as there is no longer a need to check for both bounds. Ranges can be discrete (e.g.
every integer from 0 to 10 included) or continuous (e.g. all real numbers between
0 and 10 included, or any point in time between 1 January and 30 January 2013).

The simplest example would be a series of integers, say from 1 to 10:

SELECT int4range(1, 10);

Fig. 7.1 Temporal profiles of raw (black line) and cleaned (red line) MODIS NDVI data over a
5-year period (2000–2004) for a location in the municipality of Terlago (46.10�N, 11.05�E,
northern Italy)

6 http://www.postgresql.org/docs/9.2/static/rangetypes.html.

100 M. Basille et al.

http://www.postgresql.org/docs/9.2/static/rangetypes.html

The result is

 int4range

 [1,10)

A range is defined solely by its lower and upper bounds, and, by default, assumes
that the lower bound is included, but the upper bound is excluded. In other words,
the former query defined the series 1, 2, 3, 4, 5, 6, 7, 8, 9 and did not include 10. As
can be seen from the output, the convention used by PostgreSQL is a square bracket
for an inclusion and a parenthesis for an exclusion. Each range type has a con-
structor function with the same name as the range type (e.g. int4range, numrange,
or daterange), and accepts as a third argument the specification of the bound (e.g.
‘[)’, which is the default setting). Hence, a range of dates (from 20 March 2013 to
22 September 2013 inclusive) would be constructed like this:

SELECT daterange('2013-03-20', '2013-09-22', '[]');

The result is

 daterange

 [2013-03-20,2013-09-23)

Note that in this case, PostgreSQL transformed the result with the default ‘[)’
notation, which excludes the upper bound, using the next day. The same result can be
achieved by the use of an explicit formulation ‘casted’ to the range type of interest:

SELECT '[2013-03-20, 2013-09-22]'::daterange;

This query results in the exact same output, i.e. the period containing all days
from 20 March 2013 (included) to 22 September 2013 (included), which defines
the period between the two equinoxes when days are longer than nights in the
northern hemisphere in 2013. To avoid any confusion, it might be a good practice
to use explicit formulas, which forces the declaration of the bounds, and are hence
less error prone. You could be even more precise and specify the exact times
between the two equinoxes using the tsrange type:

SELECT '[2013-03-20 11:01:55, 2013-09-22 20:44:08)'::tsrange;

The result is

 tsrange

 ["2013-03-20 11:01:55","2013-09-22 20:44:08")

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 101

The main interest of using a range is to easily check whether a value (or another
range) is included in it. Note that only elements from the same type can be
compared (e.g. dates with dates, timestamps with timestamps). You thus need to
use explicit casting when necessary. Let us check for instance whether you are
currently between the two equinoxes of 2013, using the operator ‘@[’
(containment):

SELECT '[2013-03-20, 2013-09-22]'::daterange @> now()::date AS in_range;

If you run this query after 22 September 2013, the output of the last query is
likely to be false. Other useful operators include equality (=), union (+), inter-
section (*) or overlap (&&)7:

SELECT
 '[2013-03-20, 2013-09-22]'::daterange = daterange('2013-03-20',

'2013-09-22', '[]') AS equal_range;

SELECT
 '[2013-03-20, 2013-09-22]'::daterange + '[2013-06-01, 2014-01-01)'

::daterange AS union_range;

SELECT
 '[2013-03-20, 2013-09-22]'::daterange * '[2013-06-01, 2014-01-01)'

::daterange AS intersection_range;

SELECT
 '[2013-03-20, 2013-09-22]'::daterange && '[2013-06-01, 2014-01-01)'

::daterange AS overlap_range;

While the first two return ‘t’, the union range is ‘[2013-03-20,2014-01-01)’ and
the intersection is ‘[2013-06-01,2013-09-23)’.

Finally, note that a range can be infinite on one side and thus does not have a
lower or a upper bound. This is achieved by using the NULL bound in the con-
structor or an empty value in the explicit formulation, for example

SELECT
 '[2013-01-01,)'::daterange;

or

SELECT
 '[2013-01-01,)'::daterange @> now()::date AS after_2013;

7 See the full list of operators and functions here: http://www.postgresql.org/docs/9.2/static/
functions-range.html.

102 M. Basille et al.

http://www.postgresql.org/docs/9.2/static/functions-range.html
http://www.postgresql.org/docs/9.2/static/functions-range.html

Import the Raster Time Series

With this data type, you can now associate each image or tile with the correct time
reference, that is, the 16-day period associated with each raster. This will make the
spatiotemporal intersection with GPS positions possible by allowing direct com-
parisons with GPS timestamps.

To start, create an empty table to store the NDVI images, including a field for
the temporal reference (of type daterange) and its index:

CREATE TABLE env_data.ndvi_modis(

 rid serial NOT NULL,

 rast raster,

 filename text,

 acquisition_range daterange,

 CONSTRAINT ndvi_modis_pkey

 PRIMARY KEY (rid));

CREATE INDEX ndvi_modis_wkb_rast_idx

 ON env_data.ndvi_modis

 USING GIST (ST_ConvexHull(rast));

COMMENT ON TABLE env_data.ndvi_modis

IS 'Table that stores values of smoothed MODIS NDVI (16-day periods).';

Now, the trick is to use two arguments of the raster2pgsql command (see also
Chap. 6): -F to include the raster file name as a column of the table (which will
then be used by the trigger function) and -a to append the data to an existing table,
instead of creating a new one. Another aspect is the absence of a flagged ‘no data’
value in the MODIS NDVI files. In these rasters, -3000 represents an empty pixel,
but this information is not stored in the raster: you will have to declare it explicitly
using the ‘-N’ argument. The NDVI data used here consist of 92 tif images from
January 2005 to December 2008, but you can import all of them in a single
operation using the wildcard character ‘*’ in the input filename. You can thus run
the following command in the Command Prompt8 (warning: you might need to
adjust the rasters’ path according to your own set-up):

C:\Program Files\PostgreSQL\9.2\bin\raster2pgsql.exe -a -C -F -M -s 4326 -t

20x20 -N -3000 C:\tracking_db\data\env_data\raster\raster_ts*.tif

env_data.ndvi_modis | psql -p 5432 -d gps_tracking_db -U postgres

You can confirm that the raster was properly loaded with all its attributes by
looking at the raster_columns view, which stores raster metadata (here, you only
retrieve the table’s schema, name, SRID and NoData value, but it is a good
practice to examine all information stored in this view):

8 Note that this is not an a SQL code and cannot be run in an SQL interface.

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 103

http://dx.doi.org/10.1007/978-3-319-03743-1_6

SELECT

 r_table_schema AS schema,

 r_table_name AS table,

 srid,

 nodata_values AS nodata

FROM raster_columns

WHERE r_table_name = 'ndvi_modis';

 schema | table | srid | nodata

----------+------------+------+--------

 env_data | ndvi_modis | 4326 | {-3000}

Each raster file embeds the acquisition period in its filename. For instance,
‘MODIS_NDVI_2005_01_01.tif’ is associated with the period from 1 January
2005 (included) to 17 January 2005 (excluded). As you can see, the period is
encoded on 10 characters following the common prefix ‘MODIS_NDVI_’. This
allows you to use the substring function to extract the year, the month and the
starting day from the filename (which was automatically stored in the filename
field during the import). For instance, you can extract the starting date from the
first raster imported (which should be ‘MODIS_NDVI_2005_01_01.tif’):

SELECT filename,

 (substring(filename FROM 12 FOR 4) || '-' ||

 substring(filename FROM 17 FOR 2) || '-' ||

 substring(filename FROM 20 FOR 2))::date AS start

FROM env_data.ndvi_modis LIMIT 1;

 filename | start

---------------------------+------------

 MODIS_NDVI_2005_01_01.tif | 2005-01-01

The same approach can be used to define the ending date of the period, by
simply adding 16 days to the previous date (remember that this day will be
excluded from the range). Note that adding 16 days takes into account the addi-
tional day at the end of February in leap years:

SELECT filename,

 (substring(filename FROM 12 FOR 4) || '-' ||

 substring(filename FROM 17 FOR 2) || '-' ||

 substring(filename FROM 20 FOR 2))::date + 16 AS end

FROM env_data.ndvi_modis LIMIT 1;

 filename | end

---------------------------+------------

 MODIS_NDVI_2005_01_01.tif | 2005-01-17

In the case of more complex filenames with a variable number of characters,
you could still retrieve the encoded date using the substring function, by extracting

104 M. Basille et al.

the relevant characters relative to some other characters found first using the
position function. Let us now update the table by converting the filenames into the
date ranges according to the convention used in file naming (note that there is an
additional constraint that selects 1 January when the start date ? 16 days exceeds
the beginning of the year):

UPDATE env_data.ndvi_modis

SET acquisition_range = daterange(

 (substring(filename FROM 12 FOR 4) || '-' ||

 substring(filename FROM 17 FOR 2) || '-' ||

 substring(filename FROM 20 FOR 2))::date,

 LEAST((substring(filename FROM 12 FOR 4) || '-' ||

 substring(filename FROM 17 FOR 2) || '-' ||

 substring(filename FROM 20 FOR 2))::date + 16,

 (substring(filename FROM 12 FOR 4)::integer + 1

 || '01')::date)); || '-' || '01' || '-'

As for any type of column, if the table contains a large number of rows
(e.g. [10,000), querying based on the acquisition_range will be faster if you first
index it (you can do it even if the table is not that big, as the PostgreSQL planner
will determine whether the query will be faster by using the index or not):

CREATE INDEX ndvi_modis_acquisition_range_idx

ON env_data.ndvi_modis (acquisition_range);

Now, each tile (and therefore each pixel) has a spatial and a temporal component
and thus can be queried according to both criteria. For instance, these are the 10 first
tiles corresponding to 1 March 2008, using the ‘@[’ operator (‘contains’). Note
that this is a leap year so that the corresponding period ends on 5 March:

SELECT rid, filename, acquisition_range

FROM env_data.ndvi_modis

WHERE acquisition_range @> '2008-03-01'::date

LIMIT 10;

 rid | filename | acquisition_range

------+---------------------------+-------------------------

 3889 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3890 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3891 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3892 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3893 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3894 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3895 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3896 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3897 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

 3898 | MODIS_NDVI_2008_02_18.tif | [2008-02-18,2008-03-05)

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 105

Based on this, you can now create a trigger and its associated function to auto-
matically create the appropriate date range during the NDVI data import. Note that
the ndvi_acquisition_range_update function will be activated before an NDVI tile is
loaded, so that the transaction is aborted if, for any reason, the acquisition_range
cannot be computed, and only valid rows are inserted into the ndvi_modis table:

CREATE OR REPLACE FUNCTION tools.ndvi_acquisition_range_update()

RETURNS trigger AS

$BODY$

BEGIN

 NEW.acquisition_range = daterange(

 (substring(NEW.filename FROM 12 FOR 4) || '-' ||

 substring(NEW.filename FROM 17 FOR 2) || '-' ||

 substring(NEW.filename FROM 20 FOR 2))::date,

 LEAST((substring(NEW.filename FROM 12 FOR 4) || '-' ||

 substring(NEW.filename FROM 17 FOR 2) || '-' ||

 substring(NEW.filename FROM 20 FOR 2))::date + 16,

 (substring(NEW.filename FROM 12 FOR 4)::integer + 1

 || '-' || '01' || '-' || '01')::date));
RETURN NEW;

END;

$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.ndvi_acquisition_range_update()

IS 'This function is raised whenever a new record is inserted into the MODIS

NDVI time series table in order to define the date range. The

acquisition_range value is derived from the original filename (that has the

structure MODIS_NDVI_YYYY_MM_DD.tif)';

CREATE TRIGGER update_ndvi_acquisition_range

BEFORE INSERT ON env_data.ndvi_modis

 FOR EACH ROW EXECUTE PROCEDURE tools.ndvi_acquisition_range_update();

Every time you add new NDVI rasters, the acquisition_range will then be
updated appropriately. At this stage, your database contains all environmental data
proposed for the database in this book and should look like Fig. 7.2 (using the DB
Manager in QGIS).

Intersection of Locations and NDVI Rasters

To intersect a GPS position with this kind of data set, both temporal and spatial
criteria must be defined. In the next example, you retrieve the MODIS NDVI value
at point (11, 46) using the ST_Value PostGIS SQL function and for the whole year
2005 with the ‘&&’ operator (‘overlap’):

106 M. Basille et al.

SELECT

 rid,

 acquisition_range,

 ST_Value(rast, ST_SetSRID(ST_MakePoint(11, 46), 4326)) / 10000 AS ndvi

FROM env_data.ndvi_modis

WHERE ST_Intersects(ST_SetSRID(ST_MakePoint(11, 46), 4326), rast)

 AND acquisition_range && '[2005-01-01,2005-12-31]'::daterange

ORDER BY acquisition_range;

The result gives you the complete NDVI profile at this location for the year 2005:

 rid | acquisition_range | ndvi

------+-------------------------+--------

 31 | [2005-01-01,2005-01-17) | 0.7047

 85 | [2005-01-17,2005-02-02) | 0.6397

 139 | [2005-02-02,2005-02-18) | 0.5974

 193 | [2005-02-18,2005-03-06) | 0.5645

 247 | [2005-03-06,2005-03-22) | 0.5745

 301 | [2005-03-22,2005-04-07) | 0.6076

 355 | [2005-04-07,2005-04-23) | 0.649

 409 | [2005-04-23,2005-05-09) | 0.8086

 463 | [2005-05-09,2005-05-25) | 0.8511

 517 | [2005-05-25,2005-06-10) | 0.8935

 571 | [2005-06-10,2005-06-26) | 0.8935

 625 | [2005-06-26,2005-07-12) | 0.8951

 679 | [2005-07-12,2005-07-28) | 0.8979

 733 | [2005-07-28,2005-08-13) | 0.9006

 787 | [2005-08-13,2005-08-29) | 0.907

 841 | [2005-08-29,2005-09-14) | 0.8682

 895 | [2005-09-14,2005-09-30) | 0.8441

 949 | [2005-09-30,2005-10-16) | 0.7556

 1003 | [2005-10-16,2005-11-01) | 0.6895

 1057 | [2005-11-01,2005-11-17) | 0.6979

 1111 | [2005-11-17,2005-12-03) | 0.7291

 1165 | [2005-12-03,2005-12-19) | 0.7778

 1219 | [2005-12-19,2006-01-01) | 0.9654

In Fig. 7.3, the NDVI variation for the year is displayed in graphical format
(screenshot taken from QGIS).

You can now retrieve NDVI values at coordinates from real animals:

SELECT

 animals_id AS ani_id,

 ST_X(geom) AS x,

 ST_Y(geom) AS y,

 acquisition_time,

 ST_Value(rast, geom) / 10000 AS ndvi

FROM main.gps_data_animals, env_data.ndvi_modis

WHERE ST_Intersects(geom, rast)

 AND acquisition_range @> acquisition_time::date
ORDER BY ani_id, acquisition_time

LIMIT 10;

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 107

Fig. 7.3 Example of complete NDVI profile for the year 2005 in a pixel in the study area.
Remember that NDVI values have been multiplied by 10,000

Fig. 7.2 Summary of the different environmental layers using the DB Manager in QGIS,
showing the type of data in the database (lines, polygons, raster or simple tables)

108 M. Basille et al.

 ani_id | x | y | acquisition_time | ndvi

--------+--------+--------+------------------------+--------

 1 | 11.044 | 46.011 | 2005-10-18 16:00:54-04 | 0.5426

 1 | 11.045 | 46.012 | 2005-10-18 20:01:23-04 | 0.5426

 1 | 11.045 | 46.008 | 2005-10-19 00:02:22-04 | 0.6566

 1 | 11.046 | 46.006 | 2005-10-19 04:03:08-04 | 0.5839

 1 | 11.043 | 46.010 | 2005-10-20 16:00:53-04 | 0.5528

 1 | 11.042 | 46.011 | 2005-10-20 20:00:48-04 | 0.5528

 1 | 11.041 | 46.010 | 2005-10-21 00:00:53-04 | 0.5429

 1 | 11.044 | 46.007 | 2005-10-21 04:01:42-04 | 0.6566

 1 | 11.046 | 46.007 | 2005-10-21 12:01:16-04 | 0.6566

 1 | 11.038 | 46.009 | 2005-10-21 16:01:23-04 | 0.5252

Now, as an example of the capabilities of PostGIS, let us try to retrieve NDVI
values in animal home ranges during a whole season. In habitat selection studies,
the habitat used by an individual is generally compared to the habitat that is
considered available to the individual. In this example, we assume that the convex
polygon encompassing all locations of the winter 2005–2006 defines the area
available during this season. In contrast, the exact locations determine what was
used by the animals. You will then, for each animal monitored during the winter
2005–2006, compute the average NDVI value at all locations and the average
NDVI value in the area covered during the same season. The following query uses
the WITH9 syntax, which allows you to break down a seemingly complex query: in
this case, you first compute the convex polygons during winter (in mcp), then
extract the NDVI values in these polygons (in ndvi_winter_mcp), and then extract
NDVI values at the GPS locations (in ndvi_winter_locs). Finally, in the last part of
the query, you just display the relevant information:

WITH

 mcp AS (

 SELECT

 animals_id,

 min(acquisition_time) AS start_time,

 max(acquisition_time) AS end_time,

 ST_ConvexHull(ST_Collect(geom)) AS geom

 FROM main.gps_data_animals

 WHERE acquisition_time >= '2005-12-21'::date

 AND acquisition_time < '2006-03-21'::date

 GROUP BY animals_id),

 ndvi_winter_mcp AS (

 SELECT

 animals_id,

 start_time,

 end_time,

 ST_SummaryStats(ST_Clip(ST_Union(rast), geom)) AS ss,

9 http://www.postgresql.org/docs/9.2/static/queries-with.html.

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 109

http://www.postgresql.org/docs/9.2/static/queries-with.html

 avg((m.ss).mean) / 10000 AS mean_mcp, l.mean AS mean_loc

FROM ndvi_winter_mcp AS m, ndvi_winter_locs AS l

WHERE m.animals_id = l.animals_id

GROUP BY m.animals_id, m.start_time, m.end_time, l.mean

ORDER BY m.animals_id;

 acquisition_range
 FROM mcp, env_data.ndvi_modis

 WHERE ST_Intersects(geom, rast)

 AND lower(acquisition_range) >= '2005-12-21'::date

 AND lower(acquisition_range) < '2006-03-21'::date

 GROUP BY animals_id, start_time, end_time, geom,
 acquisition_range),
 ndvi_winter_locs AS (

 SELECT

 animals_id,

 avg(ST_Value(rast, geom)) / 10000 AS mean

 FROM main.gps_data_animals, env_data.ndvi_modis

 WHERE acquisition_time >= '2005-12-21'::date

 AND acquisition_time < '2006-03-21'::date

 AND ST_Intersects(geom, rast)

 AND acquisition_range @> acquisition_time::date

 GROUP BY animals_id)

SELECT

 m.animals_id AS id,

 m.start_time::date,

 m.end_time::date,

Note that this complex query takes less than one second! The results indicate
that three out of four roe deer actually use greater NDVI values in winter than
generally available to them:

 id | start_time | end_time | mean_mcp | mean_loc

----+------------+------------+----------+----------

 1 | 2005-12-21 | 2006-03-20 | 0.424 | 0.454

 2 | 2005-12-21 | 2006-03-20 | 0.276 | 0.333

 3 | 2005-12-21 | 2006-03-20 | 0.436 | 0.452

 4 | 2005-12-21 | 2006-03-20 | 0.538 | 0.510

Automating the Intersection

The last step is now to automate the intersection of the GPS locations and the
NDVI data set. The approach is similar to the automatic intersection with other
environmental layers (e.g. elevation or land cover) described in Chap. 6; however,
the dynamic nature of the NDVI time series makes it slightly more complex. In the
case of near real-time monitoring, you will generally acquire GPS data before the
NDVI rasters are available. As a consequence, two automated procedures are
necessary to update the table main.gps_data_animals: one after the import of new
GPS locations and one after the import of new NDVI data.

110 M. Basille et al.

http://dx.doi.org/10.1007/978-3-319-03743-1_6

First of all, you need a new column in the gps_data_animals table to store the
NDVI values:

ALTER TABLE main.gps_data_animals

ADD COLUMN ndvi_modis integer;

Now, let us first update this column manually for those locations that actually
correspond to an NDVI tile in the database:

UPDATE

 main.gps_data_animals

SET

 ndvi_modis = ST_Value(rast, geom)

FROM

 env_data.ndvi_modis

WHERE ST_Intersects(geom, rast)

 AND acquisition_range @>

 acquisition_time::date

 AND gps_validity_code = 1 AND

 ndvi_modis IS NULL;

You can verify that the fields are updated:

SELECT

 gps_data_animals_id AS id, acquisition_time,

 ndvi_modis / 10000.0 AS ndvi

FROM

 main.gps_data_animals

WHERE

 geom IS NOT NULL

ORDER BY

 acquisition_time

LIMIT 10;

The result is the following:

 id | acquisition_time | ndvi

-------+------------------------+-------

 39212 | 2005-03-20 11:03:14-05 | 0.447

 39214 | 2005-03-20 19:03:06-05 | 0.505

 39215 | 2005-03-20 23:01:45-05 | 0.505

 39217 | 2005-03-21 07:02:19-05 | 0.431

 39218 | 2005-03-21 11:01:12-05 | 0.431

 39219 | 2005-03-21 15:01:49-05 | 0.480

 39220 | 2005-03-21 19:01:24-05 | 0.480

 39221 | 2005-03-21 23:02:51-05 | 0.480

 39222 | 2005-03-22 03:03:04-05 | 0.541

 39223 | 2005-03-22 07:01:42-05 | 0.541

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 111

Now, the last, more complicated step, is to use triggers to automate the process.
Exactly as in Chap. 6, you need to extend the trigger function new_gps_data_
animals that will be automatically triggered every time you add new GPS locations
to the database:

 LIMIT 1);

CREATE OR REPLACE FUNCTION tools.new_gps_data_animals()

RETURNS trigger AS

$BODY$

DECLARE

 thegeom geometry;

 thedate date;

BEGIN

IF NEW.longitude IS NOT NULL AND NEW.latitude IS NOT NULL THEN

 thegeom = ST_SetSRID(ST_MakePoint(NEW.longitude, NEW.latitude), 4326);

 thedate = NEW.acquisition_time::date;

 NEW.geom = thegeom;

 NEW.pro_com =

 (SELECT pro_com::integer

 FROM env_data.adm_boundaries

 WHERE ST_Intersects(geom, thegeom));

 NEW.corine_land_cover_code =

 (SELECT ST_Value(rast,ST_Transform(thegeom, 3035))

 FROM env_data.corine_land_cover

 WHERE ST_Intersects(ST_Transform(thegeom, 3035), rast));

 NEW.altitude_srtm =

 (SELECT ST_Value(rast, thegeom)

 FROM env_data.srtm_dem

 WHERE ST_Intersects(thegeom, rast));

 NEW.station_id =

 (SELECT station_id::integer

 FROM env_data.meteo_stations

 ORDER BY ST_Distance_Spheroid(thegeom, geom, 'SPHEROID["WGS 84",

6378137,298.257223563]')

 NEW.roads_dist =

 (SELECT ST_Distance(thegeom::geography, geom::geography)::integer

 FROM env_data.roads

 ORDER BY ST_distance(thegeom::geography, geom::geography)

 LIMIT 1);

 NEW.ndvi_modis =

 (SELECT ST_Value(rast, thegeom)

 FROM env_data.ndvi_modis

 WHERE ST_Intersects(thegeom, rast)

 AND acquisition_range @> thedate);

 END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.new_gps_data_animals()

IS 'When called by the trigger insert_gps_positions (raised whenever a new

position is uploaded into gps_data_animals) this function gets the longitude

and latitude values and sets the geometry field accordingly, computing a set

of derived environmental information calculated intersecting or relating the

position with the environmental ancillary layers.';

112 M. Basille et al.

http://dx.doi.org/10.1007/978-3-319-03743-1_6

However, note that the update process will be limited by the availability of
NDVI data at the time of the GPS data import (NDVI data are generally available
two weeks after the period considered, which might then be later than the GPS data
import). In order to have a complete database, you thus also need to update the
table when new NDVI data are added. You can do it by running the UPDATE
query every time new images are imported or by creating another trigger function
that will automatically update the GPS locations that correspond to the NDVI
temporal range in main.gps_data_animals. Here is the trigger function:

CREATE OR REPLACE FUNCTION tools.ndvi_intersection_update()

RETURNS trigger AS

$BODY$

BEGIN

 UPDATE main.gps_data_animals

 SET ndvi_modis =

 (SELECT ST_Value(NEW.rast, geom)

 FROM env_data.ndvi_modis

 WHERE ST_Intersects(geom, NEW.rast)

AND NEW.acquisition_range @> NEW.acquisition_time::date)

 WHERE ST_Intersects(geom, NEW.rast)

 AND NEW.acquisition_range @> acquisition_time::date

 AND ndvi.modis IS NULL;
END;

$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.ndvi_intersection_update ()

IS 'When new NDVI data are added, the ndvi_modis field of

main.gps_data_animals is updated.';

The functions will be activated each time new data are loaded into
env_data.ndvi_modis. The function ndvi_intersection_update will be activated
after an NDVI tile is loaded, because we want the final version of the NDVI tiles
before propagating the updates to other tables. Here is the trigger to achieve this:

CREATE TRIGGER update_ndvi_intersection

AFTER INSERT ON env_data.ndvi_modis

 FOR EACH ROW EXECUTE PROCEDURE tools.ndvi_intersection_update();

From now on, every time you collect NDVI data and feed them into the
database using raster2pgsql, the magic will happen!

References

Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev
13:95–120

Basille M, Fortin D, Dussault C, Ouellet JP, Courtois R (2013) Ecologically based definition of
seasons clarifies predator-prey interactions. Ecography 36:220–229

7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series 113

Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based
radiotelemetry: a perfect storm of opportunities and challenges. Philos Trans R Soc B: Biol
Sci 365:2157–2162

Cracknell AP (1997) The advanced very high resolution radiometer (AVHRR). Taylor & Francis,
London

Eerens H, Haesen D, Rembold F, Urbano F, Tote C, Bydekerke L (2014) Image time series
processing for agriculture monitoring. Environ Modell Softw 53:154–162

Escadafal R, Bohbot H, Mégier J (2001) Changes in arid mediterranean ecosystems on the long
term through earth observation (CAMELEO). Final Report of EU contract IC18-CT97-0155,
Edited by Space Applications Institute, JRC, Ispra, Italy

Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues
of imprecise and habitat biased locations in ecological analyses using GPS telemetry data.
Philos Trans R Soc B: Biol Sci 365:2187–2200

Land Processes DAAC (2008) MODIS reprojection tool user’s manual. USGS Earth Resources
Observation and Science (EROS) Center

Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Dorsey Worthy L (2006) Land-cover change
detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105:142–154

Maisongrande P, Duchemin B, Dedieu G (2004) VEGETATION/SPOT: an operational mission
for the Earth monitoring; presentation of new standard products. Int J Remote Sens 25:9–14

Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection
by animals. Kluver Academic Publishers, Dordrecht

Maselli F, Barbati A, Chiesi M, Chirici G, Corona P (2006) Use of remotely sensed and ancillary
data for estimating forest gross primary productivity in Italy. Remote Sens Environ
100:563–575

McClain CR (2009) A decade of satellite ocean color observations. Annu Rev Marine Sci
1:19–42

MODIS (1999) MODIS Vegetation Index (MOD 13): Algorithm Theoretical Basis Document
Page 26 of 29 (version 3)

Moorcroft P (2012) Mechanistic approaches to understanding and predicting mammalian space
use: recent advances, future directions. J Mammal 93:903–916

Moriondo M, Maselli F, Bindi M (2007) A simple model of regional wheat yield based on NDVI
data. Eur J Agron 26:266–274

Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A
movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci
105:19052–19059

Pettorelli N, Gaillard JM, Mysterud A, Duncan P, Stenseth NC, Delorme D, Van Laere G, Toigo
C, Klein F (2006) Using a proxy of plant productivity (NDVI) to find key periods for animal
performance: the case of roe deer. Oikos 112:565–572

Townshend JRG, Justice CO (1986) Analysis of the dynamics of African vegetation using the
normalized difference vegetation index. Int J Remote Sens 8:1189–1207

Turchin P (1998) Quantitative analysis of movement: measuring and modeling population
redistribution in plants and animals. Sinauer Associates, Sunderland

Verhoef W, Menenti M, Azzali S (1996) A colour composite of NOAA-AVHRR–NDVI based on
time series analysis (1981–1992). Int J Remote Sens 17:231–235

Yu XF, Zhuang DF (2006) Monitoring forest phenophases of Northeast China based on MODIS
NDVI data. Resour Sci 28:111–117

114 M. Basille et al.

	7 Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series
	Abstract
	Introduction
	MODIS NDVI Data Series
	Dealing with Raster Time Series
	Time Ranges in PostgreSQL
	Import the Raster Time Series
	Intersection of Locations and NDVI Rasters
	Automating the Intersection
	References

