
Chapter 9
Exploring Tracking Data:
Representations, Methods and Tools
in a Spatial Database

Ferdinando Urbano, Mathieu Basille and Pierre Racine

Abstract The objects of movement ecology studies are animals whose move-
ments are usually sampled at more-or-less regular intervals. This spatiotemporal
sequence of locations is the basic, measured information that is stored in the
database. Starting from this data set, animal movements can be analysed (and
visualised) using a large set of different methods and approaches. These include
(but are not limited to) trajectories, raster surfaces of probability density, points,
(home range) polygons and tabular statistics. Each of these methods is a different
representation of the original data set that takes into account specific aspects of the
animals’ movement. The database must be able to support these multiple repre-
sentations of tracking data. In this chapter, a wide set of methods for implementing
many GPS tracking data representations into a spatial database (i.e. with SQL code
and database functions) are introduced. The code presented is based on the data-
base created in Chaps. 2, 3, 4, 5, 6, 7 and 8.

Keywords Animal movement � Trajectory � Home range � Database functions �
Movement parameters

F. Urbano (&)
Università Iuav di Venezia, Santa Croce 191 Tolentini, 30135 Venice, Italy
e-mail: ferdi.urbano@gmail.com

M. Basille
Fort Lauderdale Research and Education Center, University of Florida, 3205 College
Avenue, Fort Lauderdale, FL 33314, USA
e-mail: basille@ase-research.org

P. Racine
Centre for Forest Research, University Laval, Pavillon Abitibi-Price, 2405 de la Terrasse,
Bureau 1122, Quebec City, QC G1V 0A6, Canada
e-mail: pierre.racine@sbf.ulaval.ca

F. Urbano and F. Cagnacci (eds.), Spatial Database for GPS Wildlife Tracking Data,
DOI: 10.1007/978-3-319-03743-1_9, � Springer International Publishing Switzerland 2014

139

http://dx.doi.org/10.1007/978-3-319-03743-1_2
http://dx.doi.org/10.1007/978-3-319-03743-1_3
http://dx.doi.org/10.1007/978-3-319-03743-1_4
http://dx.doi.org/10.1007/978-3-319-03743-1_5
http://dx.doi.org/10.1007/978-3-319-03743-1_6
http://dx.doi.org/10.1007/978-3-319-03743-1_7
http://dx.doi.org/10.1007/978-3-319-03743-1_8

Introduction

The objects of movement ecology studies are animals whose movements are
usually sampled at more-or-less regular intervals. This spatiotemporal sequence of
locations is the basic, measured information that is stored in the database. Starting
from this data set, animal movements can be analysed (and visualised) using a
large set of different methods and approaches. These include (but are not limited
to) trajectories, raster surfaces of probability density, points, (home range) poly-
gons and tabular statistics. Each of these methods is a different representation of
the original data set that takes into account specific aspects of the animals’
movement. The database must be able to support these multiple representations of
tracking data.

Although some very specific algorithms (e.g. kernel home range) must be run in
a dedicated GIS or spatial statistics environment (see Chaps. 10 and 11), a number
of analyses can be implemented directly in PostgreSQL/PostGIS. This is possible
due to the large set of existing spatial functions offered by PostGIS and to the
powerful but still simple possibility of combining and customising these tools with
procedural languages for applications specific to wildlife tracking. What makes the
use of databases to process tracking data very attractive is that databases are
specifically designed to perform a massive number of simple operations on large
data sets. In the recent past, biologists typically undertook movement ecology
studies in a ‘data poor, theory rich’ environment, but in recent years this has
changed as a result of advances in data collection techniques. In fact, in the case of
GPS data, for which the sampling interval is usually frequent enough to provide
quite a complete picture of the animal movement, the problem is not to derive new
information using complex algorithms run on limited data sets (as for VHF or
Argos Doppler data), but on the contrary to synthesise the huge amount of
information embedded in existing data in a reduced set of parameters.

Complex models based on advanced statistical tools are still important, but the
focus is on simple operations performed in near real time on a massive data flow.
Databases can support this approach, giving scientists the ability to test their
hypotheses or provide managers the compact set of information that they need to
take their decisions. The database can also be used in connection with GIS and
spatial statistical software. The database can preprocess data in order to provide
more advanced algorithms the data set requires for the analysis. In the exercise for
this chapter, you will create a number of functions1 to manipulate and prepare data
for more complex analysis. These include functions to extract environmental

1 The concepts behind many of the tools presented in this chapter derive from the work of
Clement Calenge for Adehabitat (cran.r-project.org/web/packages/adehabitat/index.html), an R
package for tracking data analysis.

140 F. Urbano et al.

http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://dx.doi.org/10.1007/978-3-319-03743-1_11
http://www.cran.r-project.org/web/packages/adehabitat/index.html

statistics from a set of GPS positions; create (and store) trajectories; regularise
trajectories (subsample and spatially interpolate GPS positions at a defined time
interval); define bursts; compute geometric parameters (e.g. spatial and temporal
distance between GPS positions, relative and absolute angles, speed); calculate
home ranges based on a minimum convex polygon (MCP) algorithm; and run and
store analyses on trajectories. These are examples that can be used to develop your
own tools.

Extraction of Statistics from the GPS Data Set

A first, simple example of animal movement modelling and representation based
on GPS positions is the extraction of statistics to characterise animals’ environ-
mental preferences (in this case, minimum, maximum, average and standard
deviation of altitude, and the number of available GPS positions):

SELECT

 animals_id,

 min(altitude_srtm)::integer AS min_alt,

 max(altitude_srtm)::integer AS max_alt,
 avg(altitude_srtm)::integer AS avg_alt,

 stddev(altitude_srtm)::integer AS alt_stddev,

 count(*) AS num_loc

FROM main.gps_data_animals

WHERE gps_validity_code = 1

GROUP BY animals_id

ORDER BY avg(altitude_srtm);

The result is

 animals_id | min_alt | max_alt | avg_alt | alt_stddev | num_loc

------------+---------+---------+---------+------------+---------

 6 | 678 | 989 | 774 | 58 | 278

 5 | 596 | 1905 | 1323 | 337 | 2695

 1 | 686 | 1816 | 1337 | 356 | 1647

 3 | 588 | 1567 | 1350 | 257 | 1826

 4 | 688 | 1887 | 1364 | 332 | 2641

 2 | 926 | 1816 | 1519 | 206 | 2194

It is also possible to calculate similar statistics for categorised attributes, like
land cover classes:

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 141

SELECT

 animals_id, (count(*)/tot::double precision)::numeric(5,4) AS percentage,
 label1

FROM

 main.gps_data_animals,

 env_data.corine_land_cover_legend,

 (SELECT animals_id AS x, count(*) AS tot
 FROM main.gps_data_animals

 WHERE gps_validity_code = 1

 GROUP BY animals_id) a

WHERE

 gps_validity_code = 1 AND

 animals_id = x AND

 corine_land_cover_code = grid_code

GROUP BY animals_id, label1, tot

ORDER BY animals_id, label1;

The result is

 animals_id | percentage | label1

------------+------------+-------------------------------

 1 | 0.3036 | Agricultural areas

 1 | 0.6964 | Forest and semi natural areas

 2 | 0.0251 | Agricultural areas

 2 | 0.9749 | Forest and semi natural areas

 3 | 0.4578 | Agricultural areas

 3 | 0.5422 | Forest and semi natural areas

 4 | 0.3268 | Agricultural areas

 4 | 0.6732 | Forest and semi natural areas

 5 | 0.3662 | Agricultural areas

 5 | 0.6338 | Forest and semi natural areas

 6 | 0.5791 | Agricultural areas

 6 | 0.0108 | Artificial surfaces

 6 | 0.4101 | Forest and semi natural areas

A New Data Type for GPS Tracking Data

Before adding new tools to your database, it is useful to define a new composite
data type2. The new data type combines the simple set of attributes animals_id (as
integer), acquisition_time (as timestamp with time zone), and geom (as geometry)
and can be used by most of the functions that can be developed for tracking data.
Having this data type, it becomes easier to write functions to process GPS loca-
tions. First create a data type that combines these attributes:

2 http://www.postgresql.org/docs/9.2/static/sql-createtype.html.

142 F. Urbano et al.

http://www.postgresql.org/docs/9.2/static/sql-createtype.html

CREATE TYPE tools.locations_set AS (

 animals_id integer,

 acquisition_time timestamp with time zone,

 geom geometry(point, 4326));

You can also create a view where this subset of information is retrieved from
gps_data_animals:

CREATE OR REPLACE VIEW main.view_locations_set AS

 SELECT

 gps_data_animals.animals_id,

 gps_data_animals.acquisition_time,

 CASE

 WHEN gps_data_animals.gps_validity_code = 1 THEN

 gps_data_animals.geom

 ELSE NULL::geometry

 END AS geom

 FROM main.gps_data_animals

 WHERE gps_data_animals.gps_validity_code != 21

 ORDER BY gps_data_animals.animals_id, gps_data_animals.acquisition_time;

COMMENT ON VIEW main.view_locations_set

IS 'View that stores the core information of the set of GPS positions (id of

the animal, the acquisition time and the geometry), where non valid records

are represented with empty geometry.';

The result is the complete set of GPS locations stored in main.gps_data_ani-
mals with a limited set of attributes. As you can see, for locations without valid
coordinates (gps_validity_code ! = 1), the geometry is set to NULL. Records with
duplicated acquisition times are excluded from the data set. This view can be used
as a reference for the functions that have to deal with the locations_set data set.

Representations of Trajectories

You can exploit the locations_set data type to create trajectories and permanently
store them in a table. For a general introduction to trajectories in wildlife ecology,
see Calenge et al. (2009), which is also a major reference for a review of the
possible approaches in wildlife tracking data analysis. First, you can create the
table to accommodate trajectories (see the comment in the function itself for more
details):

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 143

CREATE TABLE analysis.trajectories (

 trajectories_id serial NOT NULL, animals_id integer NOT NULL,

 start_time timestamp with time zone NOT NULL,

 end_time timestamp with time zone NOT NULL,

 description character varying, ref_user character varying,
 num_locations integer, length_2d integer,

 insert_timestamp timestamp with time zone DEFAULT now(),

 original_data_set character varying,geom geometry(linestring, 4326),
 CONSTRAINT trajectories_pk

 PRIMARY KEY (trajectories_id),

 CONSTRAINT trajectories_animals_fk

 FOREIGN KEY (animals_id)

 REFERENCES main.animals (animals_id) MATCH SIMPLE

 ON UPDATE NO ACTION ON DELETE NO ACTION

);

COMMENT ON TABLE analysis.trajectories

IS 'Table that stores the trajectories derived from a set of selected

locations. Each trajectory is related to a single animal. This table is

populated by the function tools.make_traj. Each element is described by a

number of attributes: the starting date and the ending date of the location

set, a general description (that can be used to tag each record with specific

identifiers), the user who did the analysis, the number of locations (or

vertex of the lines) that produced the analysis, the length of the line, and

the SQL that generated the dataset.';

Then, you can create a function that produces the trajectories and stores them in
the table analysis.trajectories. This function creates a trajectory given an SQL
code that selects a set of GPS locations (as locations_set object) where users can
specify the desired criteria (e.g. id of the animal, start and end time). It is also
possible to add a second parameter: a text that is used to comment the trajectory.
A trajectory will be created for each animal in the data set.

CREATE OR REPLACE FUNCTION tools.make_traj (

 locations_set_query character varying DEFAULT

'main.view_locations_set'::character varying,

 description character varying DEFAULT 'Standard trajectory'::character

varying)

RETURNS integer AS

$BODY$

DECLARE

 locations_set_query_string character varying;

BEGIN

 locations_set_query_string = (SELECT replace(locations_set_query, '''',''''''));

 EXECUTE

 'INSERT INTO analysis.trajectories (animals_id, start_time, end_time,

description, ref_user, num_locations, length_2d, original_data_set, geom)

SELECT sel_subquery.animals_id, min(acquisition_time),

max(acquisition_time), ''' ||description|| ''', current_user, count(*),

ST_length2d_spheroid(ST_MakeLine(sel_subquery.geom),

''SPHEROID("WGS84",6378137,298.257223563)''::spheroid), '''||

144 F. Urbano et al.

locations_set_query_string ||''', ST_MakeLine(sel_subquery.geom) AS geom

 FROM

 (SELECT *

 FROM ('||locations_set_query||') a

 WHERE a.geom IS NOT NULL

 ORDER BY a.animals_id, a.acquisition_time) sel_subquery

 GROUP BY sel_subquery.animals_id;';

 raise notice 'Operation correctly performed. Record inserted into

analysis.trajectories';

 RETURN 1;

END;

$BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.make_traj(character varying, character varying) IS

'This function produces a trajectory from a locations_set object (animals_id,

acquisition_time, geom) in the table analysis.trajectories. Two parameters are

accepted: the first is the SQL code that generates the locations_set object,

the second is a string that is used to comment the trajectory. A trajectory

will be created for each animal in the data set and stored as a new record in

the table. If you need to include a single quote in the SQL that selects the

locations (for example, when you want to define a timestamp), you have to use

an additional single quote to escape it.';

Note that in PostgreSQL, if you want to add a single quote in a string (‘), which
is usually the character that closes a string, you have to use an escape character
before3. This can be done using two single quotes (‘‘): the result in the string will
be a single quote. Here are two examples of use. The first example is

SELECT

 tools.make_traj(

 'SELECT * FROM main.view_locations_set WHERE acquisition_time > ''2006-

01-01''::timestamp AND animals_id = 3', 'First test');

The second example is

SELECT

 tools.make_traj(

 'SELECT animals_id, acquisition_time, geom FROM main.gps_data_animals

WHERE gps_validity_code = 1 AND acquisition_time <''2006-01-01''::
 'Second test');timestamp',

The outputs are stored in the analysis.trajectories table. You can see the results
in tabular format with

SELECT * from analysis.trajectories;

3 http://www.postgresql.org/docs/9.2/static/sql-syntax-lexical.html.

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 145

http://www.postgresql.org/docs/9.2/static/sql-syntax-lexical.html

A subset of the fields returned from this query is reported below.

 trajectories_id | animals_id | description | num_locations | length_2d

-----------------+------------+-------------+---------------+-----------

 1 | 3 | First test | 1426 | 288928

 2 | 1 | Second test | 332 | 70043

 3 | 2 | Second test | 1614 | 307836

 4 | 3 | Second test | 400 | 73284

 5 | 4 | Second test | 424 | 72499

 6 | 6 | Second test | 278 | 40602

You can compare the length calculated on a 2D trajectory and on a 3D tra-
jectory (i.e. also considering the vertical displacement). This is the code for the 2D
trajectory:

SELECT

 sel_subquery.animals_id,

 ST_length(

 ST_MakeLine(sel_subquery.geom)::geography)::integer AS lengt_line2d,

 ST_numpoints(

 ST_MakeLine(sel_subquery.geom)) AS num_locations

FROM

 (SELECT

 gps_data_animals.animals_id,

 gps_data_animals.geom,

 gps_data_animals.acquisition_time

 FROM main.gps_data_animals

 WHERE gps_validity_code = 1

 ORDER BY gps_data_animals.animals_id, gps_data_animals.acquisition_time)

 sel_subquery

GROUP BY

 sel_subquery.animals_id;

The result is

 animals_id | length_line2d | num_locations

------------+---------------+---------------

 1 | 287284 | 1647

 2 | 433959 | 2194

 3 | 362232 | 1826

 4 | 480911 | 2641

 5 | 628674 | 2695

 6 | 40602 | 278

146 F. Urbano et al.

This is the code for the 3D trajectory:

SELECT

 animals_id,

 ST_3DLength_Spheroid(

 ST_SetSrid(ST_MakeLine(geom), 4326),

 'SPHEROID("WGS84",6378137,298.257223563)'::spheroid)::integer AS

length_line3d,

 ST_NumPoints(ST_SetSrid(ST_MakeLine(geom), 4326)) AS num_locations

FROM

 (SELECT

 gps_data_animals.animals_id,

 gps_data_animals.acquisition_time,

 ST_SetSRID(ST_makepoint(

 ST_X(gps_data_animals.geom),

 ST_Y(gps_data_animals.geom),

 gps_data_animals.altitude_srtm::double precision,

 date_part('epoch'::text, gps_data_animals.acquisition_time)), 4326)

 AS geom

 FROM main.gps_data_animals

 WHERE gps_validity_code = 1

 ORDER BY gps_data_animals.animals_id, gps_data_animals.acquisition_time) a

GROUP BY animals_id;

The result is

 animals_id | length_line3d | num_locations

------------+---------------+---------------

 1 | 296676 | 1647

 2 | 448134 | 2194

 3 | 374117 | 1826

 4 | 491886 | 2641

 5 | 639680 | 2695

 6 | 43372 | 278

You can see how in an alpine environment the difference can be relevant. Many
functions in PostGIS support 3D objects. For a complete list, you can check the
documentation4. You can also store points as 3DM objects, where not just the
altitude is considered, but also a measure that can be associated with each point.
For tracking data, this can be used to store, embedded in the spatial attribute, the
acquisition time. As the timestamp data type cannot be used directly, it can be
transformed to an integer using epoch5, an integer that represents the number of
seconds since 1 January 1970.

4 http://www.postgis.org/docs/PostGIS_Special_Functions_Index.html#PostGIS_3D_Functions.
5 http://www.postgresql.org/docs/9.2/static/functions-datetime.html.

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 147

http://www.postgis.org/docs/PostGIS_Special_Functions_Index.html#PostGIS_3D_Functions
http://www.postgresql.org/docs/9.2/static/functions-datetime.html

Regularisation of GPS Location Data Sets

Another useful tool is the regularisation of the location data set. Many times the
acquisition time of the GPS sensor is scheduled at a varying frequency. The
function introduced below transforms an irregular time series into a regular one,
i.e. with a fixed time step. Records that do not correspond to the desired frequency
are discharged, while if no record exists at the required time interval, a (virtual)
record with the timestamp but no coordinates is created (see the comments
embedded in the function for more information on input parameters). Note that this
function does not perform any interpolation, but simply resamples the available
locations adding a record with NULL coordinates where necessary.

CREATE OR REPLACE FUNCTION tools.regularize(

 animal integer,

 time_interval integer DEFAULT 10800,

 buffer double precision DEFAULT 600,

 starting_time timestamp with time zone DEFAULT NULL::timestamp with time zone,

 ending_time timestamp with time zone DEFAULT NULL::timestamp with time zone)
RETURNS SETOF tools.locations_set AS

$BODY$

DECLARE

 location_set tools.locations_set%rowtype;

 cursor_var record;

 interval_length integer;

 check_animal boolean;

BEGIN

-- Error trapping: if the buffer is > 0.5 * time interval, I could take 2

times the same locations, therefore an exception is raised

IF buffer > 0.5 * time_interval THEN

 RAISE EXCEPTION 'With a buffer (%) > 0.5 * time interval (%), you could get

twice the same location, please reduce buffer or increase time interval.',

buffer, time_interval;

END IF;

-- If the starting date is not set, the minimum, valid timestamp of the data

set is taken

IF starting_time IS NULL THEN

 SELECT

 min(acquisition_time)

 FROM

 main.view_locations_set

 WHERE

 view_locations_set.animals_id = animal

 INTO starting_time;

END IF;
-- If the ending date is not set, the maximum, valid timestamp of the data set

is taken

IF ending_time IS NULL THEN

 SELECT max(acquisition_time)

148 F. Urbano et al.

 FROM main.view_locations_set

 WHERE view_locations_set.animals_id = animal

 INTO ending_time;

END IF;

-- I define the interval time (number of seconds between the starting and

ending time)

SELECT extract(epoch FROM (ending_time-starting_time))::integer + buffer

INTO interval_length;

-- I create a 'virtual' set of records with regular time intervals (from

starting_time to ending_time, with a step equal to the interval length; then I

go through all the elements of the virtual set and check whether a real record

exists in main.view_locations_set that has an acquisition_time closer then the

defined buffer. If more then 1 record exists in the buffer range, then I take

the 'closest'.
FOR location_set IN

 SELECT

 animal,

 (starting_time + generate_series (0, interval_length, time_interval) *

interval '1 second'),

 NULL::geometry

LOOP

 SELECT geom, acquisition_time

 FROM main.view_locations_set

 WHERE

 animals_id = animal AND

 (acquisition_time < (location_set.acquisition_time + interval '1 second'

* buffer) AND

 acquisition_time > (location_set.acquisition_time - interval '1 second'

* buffer))

 ORDER BY

 abs(extract (epoch FROM (acquisition_time – location_set.acquisition_time)))

 LIMIT 1

 INTO cursor_var;

-- If I have a record in main.view_locations_set, I get the values from

there, otherwise I keep my 'virtual' record

 IF cursor_var.acquisition_time IS NOT NULL THEN

 location_set.acquisition_time = cursor_var.acquisition_time;

 location_set.geom = cursor_var.geom;

 END IF;

 RETURN NEXT location_set;

END LOOP;

RETURN;

END;
$BODY$

LANGUAGE plpgsql;

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 149

COMMENT ON FUNCTION tools.regularize(integer, integer, double precision,

timestamp with time zone, timestamp with time zone)

IS 'This function creates a complete, regular time series of locations from

main.view_locations_set using an individual id, a time interval (in

seconds), a buffer time (in seconds, which corresponds to the accepted

delay of GPS recording), a starting time (if no values is defined, the first

record of the animal data set is taken), and an ending time (if no value is

defined, the last record of the animal data set is taken). The function

checks at every time step whether a real record (with or without coordinates)

in the main.view_locations_set table exists (which is the

locations_set object of the "main.gps_data_animals table): if any real data

exist (inside a defined time interval buffer from the reference timestamp

generated by the function) in main.view_locations_set, the real record is

used, otherwise a virtual record is created (with empty geometry). The

output is a table with the structure "location_set" (animals_id integer,

acquisition_time timestamp with time zone, geom geometry).';

You can test the effects of the function, comparing the different results with the
original data set. For instance, let us extract a regular trajectory for animal 6 with a
time interval of 8 h (i.e. 60 9 60 9 8 s):

SELECT animals_id, acquisition_time, ST_AsText(geom)

FROM tools.regularize(6, 60*60*8)

LIMIT 15;

The first 15 results (out of a total of 96) are

 animals_id | acquisition_time | st_astext

------------+------------------------+------------------------------

 6 | 2005-04-04 08:01:41+02 | POINT(11.0633742 46.0649085)

 6 | 2005-04-04 16:03:08+02 | POINT(11.0626891 46.0651272)

 6 | 2005-04-05 00:03:07+02 |

 6 | 2005-04-05 08:01:50+02 | POINT(11.063423 46.0648249)

 6 | 2005-04-05 16:01:41+02 | POINT(11.0653331 46.0655397)

 6 | 2005-04-06 00:02:22+02 | POINT(11.0612517 46.0644381)

 6 | 2005-04-06 08:01:18+02 | POINT(11.0656213 46.0667145)

 6 | 2005-04-06 16:03:08+02 |

 6 | 2005-04-07 00:03:08+02 |

 6 | 2005-04-07 08:01:42+02 | POINT(11.0632025 46.0663228)

 6 | 2005-04-07 16:01:41+02 | POINT(11.0643889 46.0661862)

 6 | 2005-04-08 00:01:41+02 | POINT(11.063448 46.0640128)

 6 | 2005-04-08 08:02:21+02 | POINT(11.0659235 46.0660545)

 6 | 2005-04-08 16:03:01+02 | POINT(11.0627981 46.0660227)

 6 | 2005-04-09 00:01:41+02 | POINT(11.0618669 46.0646442)

150 F. Urbano et al.

The same with a time interval of 4 h

SELECT animals_id, acquisition_time, ST_AsText(geom)

FROM tools.regularize(6, 60*60*4)

LIMIT 15;

The first 15 results (out of a total of 191) are

 animals_id | acquisition_time | st_astext

------------+------------------------+------------------------------

 6 | 2005-04-04 08:01:41+02 | POINT(11.0633742 46.0649085)

 6 | 2005-04-04 12:03:04+02 |

 6 | 2005-04-04 16:03:08+02 | POINT(11.0626891 46.0651272)

 6 | 2005-04-04 20:01:17+02 | POINT(11.0645187 46.0646995)

 6 | 2005-04-05 00:03:07+02 |

 6 | 2005-04-05 04:01:03+02 | POINT(11.0622415 46.065877)

 6 | 2005-04-05 08:01:50+02 | POINT(11.063423 46.0648249)

 6 | 2005-04-05 12:03:03+02 | POINT(11.0639178 46.0640381)

 6 | 2005-04-05 16:01:41+02 | POINT(11.0653331 46.0655397)

 6 | 2005-04-05 20:02:48+02 | POINT(11.0634889 46.0651745)

 6 | 2005-04-06 00:02:22+02 | POINT(11.0612517 46.0644381)

 6 | 2005-04-06 04:01:46+02 | POINT(11.0639874 46.0651024)

 6 | 2005-04-06 08:01:18+02 | POINT(11.0656213 46.0667145)

 6 | 2005-04-06 12:01:48+02 | POINT(11.0632134 46.0632785)

 6 | 2005-04-06 16:03:08+02 |

And finally, with a time interval of just 1 h

SELECT animals_id, acquisition_time, ST_AsText(geom)

FROM tools.regularize(6, 60*60*1)

LIMIT 15;

The first 15 results (out of a total of 762) are

 animals_id | acquisition_time | st_astext

------------+------------------------+------------------------------

 6 | 2005-04-04 08:01:41+02 | POINT(11.0633742 46.0649085)

 6 | 2005-04-04 09:01:41+02 |

 6 | 2005-04-04 10:02:24+02 | POINT(11.0626975 46.0637534)

 6 | 2005-04-04 11:01:41+02 |

 6 | 2005-04-04 12:03:04+02 |

 6 | 2005-04-04 13:01:41+02 |

 6 | 2005-04-04 14:00:54+02 | POINT(11.0619604 46.0632978)

 6 | 2005-04-04 15:01:41+02 |

 6 | 2005-04-04 16:03:08+02 | POINT(11.0626891 46.0651272)

 6 | 2005-04-04 17:01:41+02 |

 6 | 2005-04-04 18:03:08+02 | POINT(11.0633284 46.0649574)

 6 | 2005-04-04 19:01:41+02 |

 6 | 2005-04-04 20:01:17+02 | POINT(11.0645187 46.0646995)

 6 | 2005-04-04 21:01:41+02 |

 6 | 2005-04-04 22:02:51+02 | POINT(11.0626356 46.0633533)

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 151

Interpolation of Missing Coordinates

The next function creates the geometry for the records with no coordinates. It
interpolates the positions of the previous and next record, with a weight propor-
tional to the temporal distance. Before you can define the function, you have to
create an index that is a sequence number generator6. This is used to create
temporary table with a name that is always unique in the database:

CREATE SEQUENCE tools.unique_id_seq;

COMMENT ON SEQUENCE tools.unique_id_seq

IS 'Sequence used to generate unique numbers for routines that need it (e.g.

functions that need to generate temporary tables with unique names).';

You can now create the interpolation function. It accepts as input animals_id
and a locations_set (by default, the main.view_locations_set). It checks for all
locations with NULL geometry to be interpolated. You can also specify a threshold
for the allowed time gap between locations with valid coordinates, where the
default is two days. If the time gap is smaller, i.e. if you have valid locations before
and after the location without coordinates at less than two days of time difference,
the new geometry is created, otherwise the NULL value is kept (it makes no sense
to interpolate if the closest points with valid coordinates are too distant in time).

CREATE OR REPLACE FUNCTION tools.interpolate(

 animal integer, locations_set_name character varying DEFAULT

'main.view_locations_set'::character varying,

 limit_gap integer DEFAULT 172800)

RETURNS SETOF tools.locations_set AS

$BODY$

DECLARE

 location_set tools.locations_set%rowtype;

 starting_point record;

 ending_point record;

 time_distance_tot integer;

 perc_start double precision;

 x_point double precision;

 y_point double precision;

 var_name character varying;

BEGIN

IF NOT locations_set_name = 'main.view_locations_set' THEN

-- I need a unique name for my temporary table

 SELECT nextval('tools.unique_id_seq')

 INTO var_name;

 EXECUTE

 'CREATE TEMPORARY TABLE

 temp_table_regularize_'|| var_name ||' AS SELECT animals_id,

6 http://www.postgresql.org/docs/9.2/static/sql-createsequence.html.

152 F. Urbano et al.

http://www.postgresql.org/docs/9.2/static/sql-createsequence.html

 acquisition_time,

 geom

 FROM

 ' || locations_set_name || '

 WHERE

 animals_id = '|| animal;

 locations_set_name = 'temp_table_regularize_'|| var_name;

END IF;

-- I loop though all the elements of my data set

FOR location_set IN EXECUTE

 'SELECT * FROM ' || locations_set_name || ' WHERE animals_id = ' || animal

LOOP

-- If the record has a NULL geometry values, I look for the previous and

next valid locations and interpolate the coordinates between them

 IF location_set.geom IS NULL THEN

-- I get the geometry and timestamp of the next valid location

 EXECUTE

 'SELECT

 ST_X(geom) AS x_end,

 ST_Y(geom) AS 2y_end,

 extract(epoch FROM acquisition_time) AS ending_time,

 extract(epoch FROM $$' ||location_set.acquisition_time || '$$

::timestamp with time zone) AS ref_time

 FROM

 ' || locations_set_name || '

 WHERE

 animals_id = ' || animal || ' AND

 geom IS NOT NULL AND

 acquisition_time > timestamp with time zone $$' ||

location_set.acquisition_time || '$$

 ORDER BY acquisition_time

 LIMIT 1'

 INTO ending_point;

-- I get the geometry and timestamp of the previous valid location

 EXECUTE

 'SELECT

 ST_X(geom) AS x_start,

 ST_Y(geom) AS y_start,

 extract(epoch FROM acquisition_time) AS starting_time,

 extract(epoch FROM $$' ||location_set.acquisition_time || '$$

::timestamp with time zone) AS ref_time

 FROM
 ' || locations_set_name || '

 WHERE

 animals_id = ' || animal || ' AND

 geom IS NOT NULL AND

 acquisition_time < timestamp with time zone $$' ||

location_set.acquisition_time || '$$

 ORDER BY acquisition_time DESC

 LIMIT 1'

 INTO starting_point;

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 153

previous and next locations with the buffer (from the previous location) at

the given distance.

 IF (starting_point.x_start IS NOT NULL AND ending_point.x_end IS NOT

NULL) THEN

 time_distance_tot = (ending_point.ending_time -

starting_point.starting_time);

 IF time_distance_tot <= limit_gap THEN

 perc_start = (starting_point.ref_time -

starting_point.starting_time)/time_distance_tot;

 x_point = starting_point.x_start + (ending_point.x_end -

starting_point.x_start) * perc_start;

 y_point = starting_point.y_start + (ending_point.y_end -

starting_point.y_start) * perc_start;

 SELECT ST_SetSRID(ST_MakePoint(x_point, y_point),4326)

 INTO location_set.geom;

 END IF;

 END IF;

 END IF;

RETURN NEXT location_set;

END LOOP;

-- If I created the temporary table, I delete it here.

IF NOT locations_set_name = 'main.view_locations_set' THEN

 EXECUTE 'drop table ' || locations_set_name;

END IF;

return;

END;

-- If both previous and next locations exist, I calculate the interpolated

point, weighting the two points according to the temporal distance to the

location with NULL geometry. The interpolated geometry is calculated

considering lat long as a Cartesian reference. If needed, this approach can

be improved casting geometry as geography and intersecting the line between

$BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.interpolate(integer, character varying, integer)

IS 'This function accepts as input an animals_id and a locations_set (by

default, the main.view_locations_set). It checks for all locations with NULL

geometry. If these locations have previous and next valid locations

(according to the gps_validity_code) with a gap smaller than the defined

threshold (default is 2 days), a new geometry is calculated interpolating

their geometry.';

The locations which were interpolated are not marked. You can identify the
interpolated locations by joining the result with the original table and see where
records originally without coordinates were updated. You can test it comparing the
results of the next two queries. In the first one, you just retrieve the original data set:

SELECT animals_id, acquisition_time, ST_AsText(geom)

FROM main.view_locations_set

WHERE animals_id = 1 and acquisition_time > '2006-03-01 04:00:00'

The first 15 rows of the result (1,486 rows including 398 NULL geometries) are

154 F. Urbano et al.

 animals_id | acquisition_time | st_astext

------------+------------------------+------------------------------

 1 | 2006-03-01 05:00:55+01 | POINT(11.0843483 46.010765)

 1 | 2006-03-01 09:02:37+01 | POINT(11.0843323 46.0096131)

 1 | 2006-03-01 13:03:07+01 | POINT(11.0833019 46.0089774)

 1 | 2006-03-01 17:01:55+01 | POINT(11.0831218 46.0090902)

 1 | 2006-03-01 21:02:00+01 | POINT(11.0817527 46.0107692)

 1 | 2006-03-02 01:01:46+01 | POINT(11.0835032 46.0099274)

 1 | 2006-03-02 05:01:12+01 | POINT(11.0830181 46.0101219)

 1 | 2006-03-02 09:01:52+01 | POINT(11.0830582 46.0096292)

 1 | 2006-03-02 13:03:04+01 |

 1 | 2006-03-02 17:01:54+01 | POINT(11.0832821 46.0091515)

 1 | 2006-03-02 21:02:25+01 | POINT(11.0833299 46.0096407)

 1 | 2006-03-03 01:01:18+01 | POINT(11.0847085 46.0105706)

 1 | 2006-03-03 05:01:51+01 | POINT(11.0830901 46.0107184)

 1 | 2006-03-03 09:01:53+01 | POINT(11.0827015 46.0097167)

 1 | 2006-03-03 13:02:40+01 | POINT(11.0831431 46.0088521)

In the second query, you can fill the empty geometries using the tools.inter-
polate function:

SELECT animals_id, acquisition_time, ST_AsText(geom)

FROM

 tools.interpolate(1,

 SELECT *

 FROM main.view_locations_set

 WHERE acquisition_time > ''2006-03-01 04:00:00'')as a')

LIMIT 15;

'(

The first 15 rows of the result (same number of records, but NULL geometries
have been replaced by interpolation) are reported below. You can see that there are
no gaps anymore.

 1 | 2006-03-03 09:01:53+01 | POINT(11.0827015 46.0097167)

 1 | 2006-03-03 13:02:40+01 | POINT(11.0831431 46.0088521)

 animals_id | acquisition_time | st_astext

------------+------------------------+------------------------------------

 1 | 2006-03-01 05:00:55+01 | POINT(11.0843483 46.010765)

 1 | 2006-03-01 09:02:37+01 | POINT(11.0843323 46.0096131)

 1 | 2006-03-01 13:03:07+01 | POINT(11.0833019 46.0089774)

 1 | 2006-03-01 17:01:55+01 | POINT(11.0831218 46.0090902)

 1 | 2006-03-01 21:02:00+01 | POINT(11.0817527 46.0107692)

 1 | 2006-03-02 01:01:46+01 | POINT(11.0835032 46.0099274)

 1 | 2006-03-02 05:01:12+01 | POINT(11.0830181 46.0101219)

 1 | 2006-03-02 09:01:52+01 | POINT(11.0830582 46.0096292)

 1 | 2006-03-02 13:03:04+01 | POINT(11.0831707019 46.0093891724)

 1 | 2006-03-02 17:01:54+01 | POINT(11.0832821 46.0091515)

 1 | 2006-03-02 21:02:25+01 | POINT(11.0833299 46.0096407)

 1 | 2006-03-03 01:01:18+01 | POINT(11.0847085 46.0105706)

 1 | 2006-03-03 05:01:51+01 | POINT(11.0830901 46.0107184)

You can also use this function in combination with the regularisation function
to obtain a regular data set with all valid coordinates. In this query, first you

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 155

regularise the function using a time interval of 4 h (for the animal 4), and then, you
fill the gap in records with no coordinates:

SELECT animals_id, acquisition_time, ST_AsText(geom)

FROM

 tools.interpolate(4,

 SELECT *

 FROM tools.regularize(4, 60*60*4)) a')

LIMIT 15;

'(

The first 15 records of the result (now 2,854 records with no NULL geometries) are

 animals_id | acquisition_time | st_astext

------------+------------------------+------------------------------------

 4 | 2005-10-21 22:00:47+02 | POINT(11.036965 46.0114269)

 4 | 2005-10-22 02:01:24+02 | POINT(11.0359003 46.009527)

 4 | 2005-10-22 06:01:23+02 | POINT(11.0358821 46.0095878)

 4 | 2005-10-22 10:03:07+02 | POINT(11.0363444328 46.0101559523)

 4 | 2005-10-22 14:02:56+02 | POINT(11.0368031 46.0107196)

 4 | 2005-10-22 18:00:43+02 | POINT(11.0358562 46.0093984)

 4 | 2005-10-22 22:01:18+02 | POINT(11.04381 46.0166923)

 4 | 2005-10-23 02:01:41+02 | POINT(11.046664 46.015754)

 4 | 2005-10-23 06:01:24+02 | POINT(11.0467839 46.013193)

 4 | 2005-10-23 10:01:12+02 | POINT(11.0464346 46.0154818)

 4 | 2005-10-23 14:01:42+02 | POINT(11.0467205 46.0155253)

 4 | 2005-10-23 18:00:47+02 | POINT(11.046328920 46.015740574)

 4 | 2005-10-23 22:00:47+02 | POINT(11.0459358396 46.0159566734)

 4 | 2005-10-24 02:00:47+02 | POINT(11.045542758 46.0161727728)

 4 | 2005-10-24 06:00:47+02 | POINT(11.0451496779 46.0163888723)

In fact, both functions (as with many other tools for tracking data) have the
same information (animal id, acquisition time, geometry) as input and output, so
they can be easily nested.

Detection of Sensors Acquisition Scheduling

Another interesting piece of information that can be retrieved from your GPS data
set is the sampling frequency scheduling. This information should be available as
it is defined by GPS sensors’ managers, but in many cases it is not, so it can be
useful to derive it from the data set itself. To do so, you have to create a function
based on a new data type:

 animals_id integer,

 starting_time timestamp with time zone,

 ending_time timestamp with time zone,

 num_locations integer,

 num_locations_null integer,

 interval_step integer);

CREATE TYPE tools.bursts_report AS (

156 F. Urbano et al.

This function gives the ‘bursts’ for a defined animal. Bursts are groups of
consecutive locations with the same frequency (or time interval). It requires an
animal id and a temporal buffer (in seconds) as input parameters and returns a table
with the (supposed) schedule of acquisition frequency. The output table contains
the fields animals_id, starting_time, ending_time, num_locations, num_loca-
tions_null and interval_step (in seconds, approximated according to multiples of
the buffer value). A relocation is considered to have a different interval step if the
time gap is greater or less than the defined buffer (the buffer takes into account the
fact that small changes can occur because of the delay in reception of the GPS
signal). The default value for the buffer is 600 (10 min). The function is directly
computed on main.view_locations_set (locations_set structure) and on the whole
data set of the selected animal. Here is the code of the function:

CREATE OR REPLACE FUNCTION tools.detect_bursts(

 animal integer,

 buffer integer DEFAULT 600)

RETURNS SETOF tools.bursts_report AS

$BODY$

DECLARE

 location_set tools.locations_set%rowtype;

 cursor_var tools.bursts_report%rowtype;

 starting_time timestamp with time zone;

 ending_time timestamp with time zone;

 location_time timestamp with time zone;

 time_prev timestamp with time zone;

 start_burst timestamp with time zone;

 end_burst timestamp with time zone;

 delta_time integer;

 ref_delta_time integer;

 ref_delta_time_round integer;

 n integer;

 n_null integer;

BEGIN

SELECT min(acquisition_time)
FROM main.view_locations_set

WHERE view_locations_set.animals_id = animal

INTO starting_time;

SELECT max(acquisition_time)

FROM main.view_locations_set
WHERE view_locations_set.animals_id = animal

INTO ending_time;
time_prev = NULL;

ref_delta_time = NULL;

n = 1;
n_null = 0;

FOR location_set IN EXECUTE

 'SELECT animals_id, acquisition_time, geom

 FROM main.view_locations_set

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 157

 WHERE animals_id = '''|| animal ||''' ORDER BY acquisition_time'

LOOP

 location_time = location_set.acquisition_time;

 IF time_prev IS NULL THEN

 time_prev = location_time;

 start_burst = location_time;

 ELSE

 delta_time = (extract(epoch FROM (location_time - time_prev)))::integer;

 IF ref_delta_time IS NULL THEN

 ref_delta_time = delta_time;

 time_prev = location_time;

 end_burst = location_time;

 ELSIF abs(delta_time - ref_delta_time) < (buffer) THEN

 end_burst = location_time;

 time_prev = location_time;

 n = n + 1;

 IF location_set.geom IS NULL then

 n_null = n_null + 1;

 END IF;

 ELSE

 ref_delta_time_round = (ref_delta_time/buffer::double

precision)::integer * buffer;

 IF ref_delta_time_round = 0 THEN

 ref_delta_time_round = (((extract(epoch FROM (end_burst -

start_burst)))::integer/n)/60.0)::integer * 60;

 END IF;

 RETURN QUERY SELECT animal, start_burst, end_burst, n, n_null,

ref_delta_time_round;

 ref_delta_time = delta_time;

 time_prev = location_time;

 start_burst = end_burst;

 end_burst = location_time;

 n = 1;

 n_null = 0;

 END IF;

 END IF;

END LOOP;

END IF;

RETURN QUERY SELECT animal, start_burst, end_burst, n , n_null,

ref_delta_time_round;

RETURN;

END;

$BODY$

LANGUAGE plpgsql;

ref_delta_time_round = (ref_delta_time/buffer::double precision)::integer *

buffer;

IF ref_delta_time_round = 0 THEN

 ref_delta_time_round = ((extract(epoch FROM end_burst - start_burst))::

 integer/n)::integer;

158 F. Urbano et al.

COMMENT ON FUNCTION tools.detect_bursts(integer, integer)

IS 'This function gives the "bursts" for a defined animal. Bursts are groups

of consecutive locations with the same frequency (or time interval). It

receives an animal id and a buffer (in seconds) as input parameters and

returns a table with the (supposed) schedule of location frequencies. The

output table has the fields: animals_id, starting_time, ending_time,

num_locations, num_locations_null, and interval_step (in seconds,

approximated according to multiples of the buffer value). A relocation is

considered to have a different interval step if the time gap is greater or

less than the defined buffer (the buffer takes into account the fact that

small changes can occur because of the delay in receiving the GPS signal).

The default value for the buffer is 600 (10 minutes). The function is

directly computed on main.view_locations_set (locations_set structure) and

on the whole data set for the selected animal.';

Here, you can verify the results. You can use the function with animal 5:

SELECT

 animals_id AS id,

 starting_time,

 ending_time,

 num_locations AS num,

 num_locations_null AS num_null,

 (interval_step/60.0/60)::numeric(5,2) AS hours

FROM

 tools.detect_bursts(5);

The result is

 id | starting_time | ending_time | num | nulls | hours

----+------------------------+------------------------+------+-------+-------

 5 | 2006-11-12 13:03:04+01 | 2007-10-28 05:01:17+01 | 2098 | 193 | 4.00

 5 | 2007-10-28 05:01:17+01 | 2007-10-29 13:01:23+01 | 1 | 0 | 32.00

 5 | 2007-10-29 13:01:23+01 | 2008-03-07 05:00:49+01 | 778 | 29 | 4.00

 5 | 2008-03-07 05:00:49+01 | 2008-03-07 21:03:07+01 | 1 | 0 | 16.00

 5 | 2008-03-07 21:03:07+01 | 2008-03-15 09:01:37+01 | 45 | 5 | 4.00

In this case, the time interval is constant (14,400 s, which means 4 h). The
second and fourth bursts are made of a single location. This is because you have a
gap greater than the temporal buffer with no records, not a real new burst.

Now run the same function on animal 6:

 animals_id AS id,

 starting_time,

 ending_time,

 num_locations AS num,

 num_locations_null AS num_null,

 (interval_step/60.0/60)::numeric(5,2) AS hours

FROM

 tools.detect_bursts(6);

SELECT

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 159

The result is reported below. In this case, a more varied scheduling has been
used (1, 2 and 4 h):

 id | starting_time | ending_time | num | nulls | hours

----+------------------------+------------------------+-----+-------+-------

 6 | 2005-04-04 08:01:41+02 | 2005-04-13 06:00:48+02 | 107 | 16 | 2.00

 6 | 2005-04-13 06:00:48+02 | 2005-04-13 10:02:24+02 | 1 | 0 | 4.00

 6 | 2005-04-13 10:02:24+02 | 2005-04-14 02:02:18+02 | 8 | 0 | 2.00

 6 | 2005-04-14 02:02:18+02 | 2005-04-29 02:00:54+02 | 90 | 3 | 4.00

 6 | 2005-04-29 02:00:54+02 | 2005-05-04 22:01:23+02 | 70 | 1 | 2.00

 6 | 2005-05-04 22:01:23+02 | 2005-05-05 03:01:46+02 | 1 | 0 | 5.00

 6 | 2005-05-05 03:01:46+02 | 2005-05-06 01:01:47+02 | 22 | 2 | 1.00

Representations of Home Ranges

Home range is another representation of animal movement and behaviour that can
be derived from GPS tracking data. Home range is roughly described as the area in
which an animal normally lives and travels, excluding migration, emigration or
other large infrequent excursions. There are different ways to define this concept
and different methods for computing it. A common approach to modelling home
ranges is the delineation of the boundaries (polygons) of the area identified
(according to a specific definition) as home range. The simplest way to create a
home range is the MCP approach. PostGIS has a specific function to compute
MCP (ST_ConvexHull). In this example, you can create a function to produce an
MCP using just a percentage of the available locations, in order to exclude the
outliers which are far from the pool of locations, based on a starting and ending
acquisition time. First, you can create a table where data can be stored. This table
also includes some additional information that describes the result and can be used
both to document it and to run meta-analysis. In this way, all the results of your
analysis are permanently stored, accessible, compact and documented.

 end_time timestamp with time zone NOT NULL,

 description character varying,

 ref_user character varying,

 num_locations integer,

 area numeric(13,5),

 geom geometry (multipolygon, 4326),

 percentage double precision,

 insert_timestamp timestamp with time zone DEFAULT timezone('UTC'::text,

('now'::text)::timestamp(0) with time zone),

 original_data_set character varying,

 CONSTRAINT home_ranges_mcp_pk

 PRIMARY KEY (home_ranges_mcp_id),

CREATE TABLE analysis.home_ranges_mcp (

 home_ranges_mcp_id serial NOT NULL,

 animals_id integer NOT NULL,

 start_time timestamp with time zone NOT NULL,

160 F. Urbano et al.

 CONSTRAINT home_ranges_mcp_animals_fk

 FOREIGN KEY (animals_id)

 REFERENCES main.animals (animals_id)

 MATCH SIMPLE

 ON UPDATE NO ACTION ON DELETE NO ACTION);

COMMENT ON TABLE analysis.home_ranges_mcp

IS 'Table that stores the home range polygons derived from MCP. The area is

computed in hectars.';

CREATE INDEX fki_home_ranges_mcp_animals_fk

 ON analysis.home_ranges_mcp

 USING btree (animals_id);

CREATE INDEX gist_home_mcp_ranges_index

 ON analysis.home_ranges_mcp

 USING gist (geom);

This function applies the MCP algorithm (also called convex hull) to a set of
locations. The input parameters are the animal id (each analysis is related to a
single individual), the percentage of locations to be considered and a locations_set
object (the default is main.view_locations_set). An additional parameter can be
added: a description that will be included in the table home_ranges_mcp, where
the result of the analysis is stored. The parameter percentage defines how many
locations are included in the analysis: if, for example, 90 % is specified (as 0.9),
the 10 % of locations farthest from the centroid of the data set will be excluded. If
no parameters are specified, the percentage of 100 % is used and the complete data
set (from the first to the last location) are considered. The following creates the
function:

zone)

RETURNS integer AS

$BODY$

DECLARE

 hr record;

 var_name character varying;

 locations_set_name_input character varying;

BEGIN

locations_set_name_input = locations_set_name;

CREATE OR REPLACE FUNCTION tools.mcp_perc(

 animal integer,

 perc double precision DEFAULT 1,

 description character varying DEFAULT 'Standard analysis'::character

varying,locations_set_name character varying DEFAULT

'main.view_locations_set'::character varying,starting_time

 timestamp with time zone DEFAULT NULL::timestamp with time zone,

ending_time timestamp with time zone DEFAULT NULL::timestamp with time

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 161

IF NOT locations_set_name = 'main.view_locations_set' THEN

 SELECT nextval('tools.unique_id_seq') INTO var_name;

 EXECUTE

 'CREATE TEMPORARY TABLE temp_table_mcp_perc_'|| var_name ||' AS

 SELECT *

 FROM ' || locations_set_name || '

 WHERE animals_id = '|| animal;

 locations_set_name = 'temp_table_mcp_perc_'|| var_name;

END IF;

IF perc <= 0 OR perc > 1 THEN

 RAISE EXCEPTION 'INVALID PARAMETER: the percentage of the selected

(closest to the data set centroid) points must be a value > 0 and <= 1';

END IF;

IF starting_time IS NULL THEN

 EXECUTE

 'SELECT min(acquisition_time)

 FROM '|| locations_set_name ||'

 WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '||

locations_set_name ||'.geom IS NOT NULL '

 INTO starting_time;

END IF;

IF ending_time IS NULL THEN

 EXECUTE

 'SELECT max(acquisition_time)

 FROM '|| locations_set_name ||'

 WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '||

locations_set_name ||'.geom IS NOT NULL '

 INTO ending_time;

END IF;

 (SELECT '|| locations_set_name ||'.animals_id, '|| locations_set_name

||'.geom, acquisition_time, ST_Distance('|| locations_set_name ||'.geom,

 (SELECT ST_Centroid(ST_collect('|| locations_set_name ||'.geom))

 FROM '|| locations_set_name ||'

 WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '||
locations_set_name ||'.geom IS NOT NULL AND '|| locations_set_name ||

'.acquisition_time >= $$' || starting_time ||'$$::timestamp with time

 zone AND '|| locations_set_name ||'.acquisition_time <= $$' ||

ending_time || '$ $::timestamp with time zone

 GROUP BY '|| locations_set_name ||'.animals_id)) AS dist

EXECUTE

 'SELECT

 animals_id,

 min(acquisition_time) AS start_time,

 max(acquisition_time) AS end_time,

 count(animals_id) AS num_locations,

 ST_Area(geography(ST_ConvexHull(ST_Collect(a.geom)))) AS area,

 (ST_ConvexHull(ST_Collect(a.geom))).ST_Multi AS geom

 FROM

162 F. Urbano et al.

 FROM '|| locations_set_name ||'

 WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '||

locations_set_name ||'.geom IS NOT NULL AND '|| locations_set_name

||'.acquisition_time >= $$' || starting_time ||'$$::timestamp with time

zone and '|| locations_set_name ||'.acquisition_time <= $$' ||

ending_time || '$ $::timestamp with time zone

 ORDER BY

 ST_Distance('|| locations_set_name ||'.geom,

 (SELECT ST_Centroid(ST_Collect('|| locations_set_name ||'.geom))

 FROM '|| locations_set_name ||'

 WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '||

locations_set_name ||'.geom IS NOT NULL AND '|| locations_set_name

||'.acquisition_time >= $$' || starting_time ||'$$::timestamp with time

zone and '|| locations_set_name ||'.acquisition_time <= $$' ||

ending_time || '$ $::timestamp with time zone

 GROUP BY '|| locations_set_name ||'.animals_id))LIMIT ((

 (SELECT count('|| locations_set_name ||'.animals_id) AS count

 FROM '|| locations_set_name ||'

 WHERE '|| locations_set_name ||'.animals_id = ' || animal || ' AND '||

locations_set_name ||'.geom IS NOT NULL AND '|| locations_set_name

||'.acquisition_time >= $$' || starting_time ||'$$::timestamp with time

zone AND '|| locations_set_name ||'.acquisition_time <= $$' ||

ending_time || '$ $::timestamp with time zone))::numeric * '

 || perc || ')::integer) a

 GROUP BY a.animals_id;'

 INTO hr;

 IF hr.num_locations < 3 or hr.num_locations IS NULL THEN

 RAISE NOTICE 'INVALID SELECTION: less then 3 points or no points at all

match the given criteria. The animal % will be skipped.', animal;

RETURN 0;

END IF;

INSERT INTO analysis.home_ranges_mcp (animals_id, start_time, end_time,

percentage, description, ref_user, num_locations,area, geom,

 original_data_set)values (animal, starting_time, ending_time , perc ,

 description,current_user, hr.num_locations, hr.area/1000000.00000, hr.geom,
locations_set_name_input);

$BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.mcp_perc(integer, double precision, character

varying, character varying, timestamp with time zone, timestamp with time

zone)

IS 'This function applies the MCP (Minimum Convex Polygon) algorithm (also

called convex hull) to a set of locations. The input parameters are the

IF NOT locations_set_name = 'main.view_locations_set' THEN

EXECUTE 'drop table ' || locations_set_name;

END IF;

RAISE NOTICE 'Operation correctly performed. Record inserted into

analysis.home_ranges % ', animal;

RETURN 1;

END;

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 163

animal id (each analysis is related to a single individual), the percentage

of locations considered, a locations_set object (the default is

main.view_locations_set). An additional parameter can be added: a description

that will be included in the table home_ranges_mcp, where the result of the

analysis is stored. The parameter "percentage" defines how many locations are

included in the analysis: if for example 90% is specified (as 0.9), the 10%

of locations farthest from the centroid of the data set will be excluded.If

no parameters are specified, percentage of 100% is used and the complete data

set (from the first to the last location) are considered. The function, once

computed the MCP and stored the result in home_range_mcp, does not return any

thing. A few constraints to prevent errors are included (no points selected,

percentage out of range). Note that this function works with a fixed centroid,

computed at the beginning, so the distance is calculated on this basis for

the entire selection process.';

You can create the MCP at different percentage levels:

SELECT tools.mcp_perc(1, 0.1, 'test 0.1');

SELECT tools.mcp_perc(1, 0.5, 'test 0.5');

SELECT tools.mcp_perc(1, 0.75, 'test 0.75');

SELECT tools.mcp_perc(1, 1, 'test 1');

SELECT tools.mcp_perc(1, 1, 'test start and end', 'main.view_locations_set',

'2006-01-01 00:00:00', '2006-01-10 00:00:00');

SELECT tools.mcp_perc(animals_id, 0.9, 'test all animals at 0.9') FROM

main.animals;

The output is stored in the table. You can retrieve part of the columns of the
table with

SELECT

 home_ranges_mcp_id AS id, animals_id AS animal, description, num_locations

AS num, area, percentage

FROM

 analysis.home_ranges_mcp;

The result is

 id | animal | description | num | area | percentage

----+--------+-------------------------+------+---------+------------

 1 | 1 | test 0.1 | 165 | 0.91037 | 0.1

 2 | 1 | test 0.5 | 824 | 3.12442 | 0.5

 3 | 1 | test 0.75 | 1235 | 4.52416 | 0.75

 4 | 1 | test 1 | 1647 | 8.08596 | 1

 5 | 1 | test start and end | 37 | 0.18170 | 1

 6 | 1 | test all animals at 0.9 | 1482 | 5.25487 | 0.9

 7 | 2 | test all animals at 0.9 | 1975 | 9.03271 | 0.9

 8 | 3 | test all animals at 0.9 | 1643 | 8.93319 | 0.9

 9 | 4 | test all animals at 0.9 | 2377 | 9.74893 | 0.9

 10 | 5 | test all animals at 0.9 | 2426 | 6.57880 | 0.9

 11 | 6 | test all animals at 0.9 | 250 | 0.13362 | 0.9

164 F. Urbano et al.

Note that the last statement generates the MCP for all the animals with a single
command.

A further example of synthetic representation of the GPS location set is illus-
trated in the view below: for each GPS position, you can compute a buffer (a circle
of 0.001 degrees, which at this latitude corresponds to about 100 meters), and then,
all the buffers of the same animal are merged together:

CREATE VIEW analysis.view_locations_buffer AS

 SELECT

 animals_id,

 ST_Union(ST_Buffer(geom, 0.001))::geometry(multipolygon, 4326) AS geom

 FROM main.gps_data_animals

 WHERE gps_validity_code = 1

 GROUP BY animals_id

 ORDER BY animals_id;

COMMENT ON VIEW analysis.view_locations_buffer

IS 'GPS locations - Buffer (dissolved) of 0.001 degrees.';

As you can see, when you visualise it (Fig. 9.1), the view, which is a query run
every time you access the view, takes some time, as quite complex operations must
be performed. If used often, it could be transformed into a permanent table (with
CREATE TABLE command). In this case, you might also want to add keys and
indexes.

Fig. 9.1 Layer with dissolved buffers around GPS locations

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 165

Geometric Parameters of Animal Movements

Another type of analytical tool that can be implemented within the database is the
computation of the geometric parameters of trajectories (e.g. spatial and temporal
distance between locations, speed and angles). As the meaning of these parameters
changes with the time step, you will create a function that computes the parameters
just for steps that have a time gap equal to a value defined by the user. First, you
must create the new data type tools.geom_parameters:

 deltat_t_2 integer,

 deltat_start integer,

 dist_t_1 integer,

 dist_start integer,

 speed_mh_t_1 numeric(8,2),

 abs_angle_t_1 numeric(7,5),

 rel_angle_t_2 numeric(7,5));

CREATE TYPE tools.geom_parameters AS(

 animals_id integer,

 acquisition_time timestamp with time zone,

 acquisition_time_t_1 timestamp with time zone,

 acquisition_time_t_2 timestamp with time zone,

 deltat_t_1 integer,

Now you can create the function tools.geom_parameters. It returns a table with
the geometric parameters of the data set (reference: previous location): time gap
with the previous point, time gap with the previous–previous point, distance to the
previous point, speed of the last step, distance to the first point of the data set,
absolute angle (from the previous location), relative angle (from the previous and
previous–previous locations). The input parameters are the animal id, the time gap
and a buffer to take into account possible time differences due to GPS data
reception. The time gap parameter selects just locations that have the previous
point at the defined time interval (with a buffer tolerance). All the other locations
are not taken into consideration. A locations_set class is accepted as the input
table. It is also possible to specify the starting and ending acquisition time of the
time series. The output is a table with the structure geom_parameters. If you want
to calculate the geometric parameters of an irregular sequence (i.e. the parameters
calculated in relation to the previous/next location regardless of the regularity of
the time gap), you can use a plain SQL based on window functions7 with no need
for customised functions. It is important to note that while a step is the movement
between two points, in many cases the geometric parameters of the movement
(step) are associated with the starting or the ending point. In this book, we use the

7 http://www.postgresql.org/docs/9.2/static/tutorial-window.html.

166 F. Urbano et al.

http://www.postgresql.org/docs/9.2/static/tutorial-window.html

ending point as reference. In some software, particularly the adehabitat8 package
for R (see Chap. 10), the step is associated with the starting point. If needed, the
queries and functions presented here can be modified to follow this convention.
The code of the function is

DECLARE

 cursor_var tools.geom_parameters%rowtype;

 check_animal boolean;

 var_name character varying;

BEGIN

EXECUTE

 'SELECT ' || animal || ' IN

 (SELECT animals_id FROM main.animals)' INTO check_animal;

IF NOT check_animal THEN

 RAISE EXCEPTION 'This animal is not in the data set...';

END IF;

IF starting_time IS NULL THEN

 SELECT min(acquisition_time)

 FROM main.view_locations_set

 WHERE view_locations_set.animals_id = animal

 INTO starting_time;

END IF;

IF ending_time IS NULL THEN

 SELECT max(acquisition_time)

 FROM main.view_locations_set

 WHERE view_locations_set.animals_id = animal

 INTO ending_time;

END IF;

IF NOT locations_set_name = 'main.view_locations_set' THEN

 SELECT nextval('tools.unique_id_seq') into var_name;

 EXECUTE

 'CREATE TEMPORARY TABLE temp_table_temp_table_geoparameters_'|| var_name

||' AS

 SELECT animals_id, acquisition_time, geom

 FROM ' || locations_set_name || '

 WHERE animals_id = '|| animal;

 locations_set_name = 'temp_table_temp_table_geoparameters_'|| var_name;

END IF;

CREATE OR REPLACE FUNCTION tools.geom_parameters(

 animal integer,

 time_interval integer DEFAULT 10800,

 buffer double precision DEFAULT 600,

 locations_set_name character varying DEFAULT

'main.view_locations_set'::character varying,

starting_time timestamp with time zone DEFAULT NULL::timestamp with time zone,
ending_time timestamp with time zone DEFAULT NULL::timestamp with time zone)

RETURNS SETOF tools.geom_parameters AS

$BODY$

8 http://cran.r-project.org/web/packages/adehabitat/index.html.

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 167

http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://cran.r-project.org/web/packages/adehabitat/index.html

 ELSE

 NULL

 END

 FROM

 (SELECT

 animals_id,

 acquisition_time,

 lead(acquisition_time,-1) OVER (PARTITION BY animals_id ORDER BY

acquisition_time) AS acquisition_time_t_1,

 lead(acquisition_time,-2) OVER (PARTITION BY animals_id ORDER BY

acquisition_time) AS acquisition_time_t_2,

 rank() OVER (PARTITION BY animals_id ORDER BY acquisition_time),

 (extract(epoch FROM acquisition_time) - lead(extract(epoch FROM

acquisition_time), -1) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))::integer AS deltat_t_1,

 (extract(epoch FROM acquisition_time) - lead(extract(epoch FROM

acquisition_time), -2) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))::integer AS deltat_t_2,

 (extract(epoch FROM acquisition_time) - first_value(extract(epoch FROM

acquisition_time)) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))::integer AS deltat_start,

 (ST_Distance_Spheroid(geom, lead(geom, -1) OVER (PARTITION BY

animals_id ORDER BY acquisition_time), ''SPHEROID["WGS

84",6378137,298.257223563]''))::integer AS dist_t_1,

 ST_Distance_Spheroid(geom, first_value(geom) OVER (PARTITION BY

animals_id ORDER BY acquisition_time), ''SPHEROID["WGS

84",6378137,298.257223563]'')::integer AS dist_start,

 (ST_Distance_Spheroid(geom, lead(geom, -1) OVER (PARTITION BY

animals_id ORDER BY acquisition_time), ''SPHEROID["WGS

84",6378137,298.257223563]'')/(extract(epoch FROM acquisition_time) -

lead(extract(epoch FROM acquisition_time), -1) OVER (PARTITION BY

animals_id ORDER BY acquisition_time))*60*60)::numeric(8,2) AS

 speed_Mh_t_1, ST_Azimuth(geom::geography, (lead(geom, -1) OVER

(PARTITION BY animals_id ORDER BY acquisition_time))::geography) AS

 abs_angle_t_1, ST_Azimuth(geom::geography, (lead(geom, -1) OVER

(PARTITION BY animals_id ORDER BY acquisition_time))::geography) -

 ST_Azimuth((lead(geom, -1) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))::geography, (lead(geom, -2) OVER (PARTITION BY

 animals_id ORDER BY acquisition_time))::geography) AS rel_angle_t_2

 FROM

FOR cursor_var IN EXECUTE

 'SELECT

 animals_id,

 acquisition_time,

 acquisition_time_t_1,

 acquisition_time_t_2,

 deltaT_t_1,

 deltaT_t_2,

 deltaT_start,

 dist_t_1,

 dist_start,

 speed_Mh_t_1,

 abs_angle_t_1,

 CASE WHEN (deltaT_t_2 < ' || time_interval * 2 + buffer || ' and

deltaT_t_2 > ' || time_interval * 2 - buffer || ') THEN

 rel_angle_t_2

168 F. Urbano et al.

 EXECUTE 'drop table ' || locations_set_name;

END IF;

RETURN;

END;

$BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.geom_parameters(integer, integer, double

precision, character varying, timestamp with time zone, timestamp with time

zone)

IS 'This function returns a table with the geometric parameters of the data

set (reference: previous location): time gap with the previous point, time

gap with the previous-previous point, distance to the previous point, speed

of the last step, distance from the first point of the data set, absolute

angle (from the previous location), relative angle (from the previous and

previous-previous locations). The input parameters are the animal id, the

time gap, and the buffer. The time gap selects just locations that have the

previous point at a defined time interval (with a buffer tolerance). All the

other points are not taken into consideration. A locations_set class is

accepted as the input table. It is also possible to specify the starting and

ending acquisition time of the time series. The output is a table with the

structure geom_parameters.';

 FROM

 '|| locations_set_name ||'

 WHERE

 animals_id = ' || animal ||' AND

 geom IS NOT NULL AND

 acquisition_time >= ''' || starting_time || ''' AND

 acquisition_time <= ''' || ending_time || ''') a

 WHERE

 deltaT_t_1 <' || time_interval + buffer || ' AND

 deltaT_t_1 > '|| time_interval - buffer

LOOP

RETURN NEXT cursor_var;

END LOOP;

IF NOT locations_set_name = 'main.view_locations_set' THEN

To test how the function works, you can run and compare the function applied
to the same animal 6 at different time steps. In the first case, you can use 2 h:

SELECT * FROM tools.geom_parameters(6, 60 * 60 * 2, 600);

A subset of the columns of the first 10 rows returned by the function is

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 169

 acqtime | acqtime_1 | acqtime_2 | d_1 | d_start | abs_ang | rel_ang

-------------+-------------+-------------+-----+---------+---------+---------

 94 10:02:24 | 94 08:01:41 | | 139 | 139 | 0.39 |

 94 16:03:08 | 94 14:00:54 | 94 10:02:24 | 211 | 58 | 3.41 |

 94 18:03:08 | 94 16:03:08 | 94 14:00:54 | 53 | 6 | 5.08 | 1.66

 94 20:01:17 | 94 18:03:08 | 94 16:03:08 | 96 | 92 | 5.01 | -0.06

 94 22:02:51 | 94 20:01:17 | 94 18:03:08 | 209 | 182 | 0.77 | -4.24

 95 04:01:03 | 95 02:01:40 | 94 22:02:51 | 179 | 139 | 3.19 |

 95 06:02:15 | 95 04:01:03 | 95 02:01:40 | 218 | 171 | 4.70 | 1.52

 95 08:01:50 | 95 06:02:15 | 95 04:01:03 | 174 | 10 | 0.82 | -3.89

 95 10:01:49 | 95 08:01:50 | 95 06:02:15 | 266 | 272 | 0.47 | -0.34

 95 12:03:03 | 95 10:01:49 | 95 08:01:50 | 218 | 105 | 3.96 | 3.49

The real results include a longer list of parameters that is not possible to report
because of space constraints. To save space, the dates have been transformed into
Julian day of the year (DOY, in the range 1–365).

You can apply the function with an interval step of 4 h:

SELECT * FROM tools.geom_parameters(6, 60 * 60 * 4, 600);

A subset of the result is reported below:

 acqtime | acqtime_1 | acqtime_2 | d_1 | d_start | abs_ang | rel_ang

-------------+-------------+-------------+-----+---------+---------+---------

 94 14:00:54 | 94 10:02:24 | 94 08:01:41 | 76 | 210 | 0.84 |

 95 02:01:40 | 94 22:02:51 | 94 20:01:17 | 109 | 119 | 2.78 |

 96 18:01:50 | 96 14:01:24 | 96 12:01:48 | 216 | 44 | 3.37 |

 97 02:02:08 | 96 22:01:48 | 96 20:02:20 | 233 | 302 | 0.11 |

 97 12:01:55 | 97 08:01:42 | 97 06:00:54 | 327 | 179 | 0.17 |

 97 20:01:00 | 97 16:01:41 | 97 14:01:52 | 182 | 20 | 0.48 |

 98 12:02:56 | 98 08:02:21 | 98 02:01:54 | 338 | 108 | 0.88 |

 99 04:02:13 | 99 00:01:41 | 98 22:01:22 | 87 | 83 | 3.70 |

 99 12:03:07 | 99 08:03:06 | 99 06:02:17 | 87 | 288 | 1.76 |

 99 16:00:54 | 99 12:03:07 | 99 08:03:06 | 428 | 146 | 3.29 | 1.54

As you can see, there are very few sequences of at least three points at a regular
temporal distance of 4 h in the original data set (at least in the first records).

Now apply the function with 8 h interval step:

SELECT * FROM tools.geom_parameters(6, 60*60*8, 600);

The result is reported below. Just 3 records are retrieved because the scheduling
of 8 h is not used in this data set.

 acqtime | acqtime_1 | acqtime_2 | d_1 | d_start | abs_ang |rel_ang

--------------+--------------+--------------+-----+---------+---------+-------

 108 18:01:45 | 108 10:02:18 | 108 06:02:52 | 53 | 114 | 0.09 |

 112 22:01:59 | 112 14:03:04 | 112 10:01:46 | 252 | 121 | 3.42 |

 117 10:01:01 | 117 02:03:05 | 116 22:00:53 | 181 | 53 | 2.88 |

170 F. Urbano et al.

An Alternative Representation of Home Ranges

In the next example of possible methods to represent and analyse GPS locations
using the tools provided by PostgreSQL and PostGIS, you can create a grid surface
and calculate an estimation of the time spent in seconds by each animal within
each ‘pixel’. There are many existing approaches to producing this information; in
this case, you will use an algorithm that is conceptually similar to a simplified
Brownian bridge method (Horne et al. 2007) and to the method proposed in
(Kranstauber et al. 2012). In this example, you can assume that the animal moves
with along the trajectory described by the temporal sequence of locations and that
the speed is constant along each step. You can create a grid with the given
resolution that is intersected with the trajectory. For each segment of the trajectory
generated by the intersection, the time spent by the animal is calculated (consid-
ering the time interval of that step and the relative length of the segment compared
to the whole step length). Finally, you can sum the time spent in all the segments
inside each cell. You can implement this method using a view and a function that
creates the grid, which is based on a new data type that you create with the code

CREATE TYPE tools.grid_element AS (cell_id integer, geom geometry);

Then, you can create the grid function:

CREATE OR REPLACE FUNCTION tools.create_grid(

 locations_collection geometry, xysize integer)
RETURNS SETOF tools.grid_element AS

$BODY$

WITH spatial_object AS

 (SELECT

 ST_Xmin(ST_Transform($1,tools.srid_utm(ST_X(ST_Centroid($1)),

ST_Y(ST_Centroid($1)))))::integer AS xmin,

 ST_Ymin(ST_Transform($1,tools.srid_utm(ST_X(ST_Centroid($1)),

ST_Y(ST_Centroid($1)))))::integer AS ymin,

 ST_Xmax(ST_Transform($1,tools.srid_utm(ST_X(ST_Centroid($1)),

ST_Y(ST_Centroid($1)))))::integer AS xmax,

 ST_Ymax(ST_Transform($1,tools.srid_utm(ST_X(ST_Centroid($1)),

ST_Y(ST_Centroid($1)))))::integer AS ymax,

 tools.srid_utm(ST_X(ST_Centroid($1)), ST_Y(ST_Centroid($1))) AS sridset)

 SELECT

 (ROW_NUMBER() OVER ())::integer,

 ST_Translate(cell, i , j)

 FROM

 generate_series(

 ((((SELECT xmin FROM spatial_object) - $2/2)/100)::integer)*100,

 (SELECT xmax FROM spatial_object) + $2, $2) AS i,

 generate_series(

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 171

 ((((SELECT ymin FROM spatial_object) - $2/2)/100)::integer)*100,

 (SELECT ymax FROM spatial_object) + $2, $2) AS j, spatial_object,
 (SELECT ST_setsrid(ST_GeomFROMText('POLYGON((0 0, 0 '||$2||', '||$2||'

$2||', '||$2||' 0,0 0))'),

 (SELECT sridset FROM spatial_object)) AS cell) AS foo;

$BODY$

LANGUAGE sql;

COMMENT ON FUNCTION tools.create_grid(geometry, integer)

IS 'Function that creates a vector grid with a given resolution that

contains a given geometry.';

 '||

Now, you can create the view that generates the probability surface (in this
example, for the animal 1 with a grid with a resolution of 100 m):

 SELECT

 gps_data_animals.gps_data_animals_id,

 gps_data_animals.animals_id,

 ST_MakeLine(gps_data_animals.geom,

 lead(gps_data_animals.geom, (-1)) OVER (PARTITION BY

gps_data_animals.animals_id ORDER BY gps_data_animals.acquisition_time))

 AS geom, ST_Length(ST_MakeLine(gps_data_animals.geom,

lead(gps_data_animals.geom, (-1)) OVER (PARTITION BY

gps_data_animals.animals_id ORDER BY

gps_data_animals.acquisition_time))::geography) AS line_length,

CREATE OR REPLACE VIEW analysis.view_probability_grid_traj AS

 WITH

 setx AS (

 CASE WHEN (date_part('epoch'::text, gps_data_animals.acquisition_time)

- date_part('epoch'::text, lead(gps_data_animals.acquisition_time, (-1))

OVER (PARTITION BY gps_data_animals.animals_id ORDER BY

gps_data_animals.acquisition_time))) < (60 * 60 * 24)::double precision

THEN date_part('epoch'::text, gps_data_animals.acquisition_time) -

date_part('epoch'::text, lead(gps_data_animals.acquisition_time, (-1))

OVER (PARTITION BY gps_data_animals.animals_id ORDER BY

gps_data_animals.acquisition_time))

 ELSE

 0::double precision

 END AS time_spent

 FROM

 main.gps_data_animals

 WHERE

 gps_data_animals.gps_validity_code = 1 AND

 (gps_data_animals.animals_id = 1)

 ORDER BY

 gps_data_animals.acquisition_time),

 gridx AS (

 SELECT

172 F. Urbano et al.

setx.animals_id,

tools.create_grid(ST_Collect(setx.geom), 100) AS cell

FROM setx

GROUP BY setx.animals_id)
 SELECT

 END AS segment_time_spent,

 (gridx.cell).geom AS geom

 FROM gridx, setx

 WHERE ST_Intersects(ST_Transform(setx.geom, ST_SRID((SELECT

(gridx.cell).geom AS geom FROM gridx LIMIT 1))), (gridx.cell).geom) AND

setx.time_spent > 0::double precision AND setx.animals_id =

gridx.animals_id) a

 GROUP BY a.animals_id, a.cell_id, a.geom

 HAVING sum(a.segment_time_spent) > 0::double precision;

COMMENT ON VIEW analysis.view_probability_grid_traj

IS 'This view presents the SQL code to calculate the time spent by an animal

on every cell of a grid with a defined resolution, which corresponds to a

probability surface. Trajectories (segments between locations) are considered.

 Each segment represents the time spent between the two locations. This view

 calls the function tools.reate_grid. This is a view with pure SQL, but this

 tool can be coded into a function that uses temporary tables and some other

 optimized approaches in order to speed up the processing time. In this case,

 just animal 1 is returned.';

 a.animals_id * 10000 + a.cell_id AS id,

 a.animals_id,

 a.cell_id,

 ST_Transform(a.geom, 4326)::geometry(Polygon,4326) AS geom,

 (sum(a.segment_time_spent) / 60::double precision / 60::double

precision)::integer AS hours_spent

 FROM

 (SELECT

 gridx.animals_id,

 (gridx.cell).cell_id AS cell_id,

 CASE setx.line_length WHEN 0 THEN

 setx.time_spent

 ELSE

 setx.time_spent * ST_Length(ST_Intersection(ST_Transform(setx.geom,

ST_SRID((SELECT (gridx.cell).geom AS geom FROM gridx LIMIT 1))),

(gridx.cell).geom)) / setx.line_length

This process involves time-consuming computation and you might need to wait
several seconds to get the result (Fig. 9.2).

This approach has a number of advantages:

• it is implemented with SQL, which is a relatively simple language to modify/
customise/extend;

• it is run inside the database, so results can be directly stored in a table, used to
run meta-analysis, and extended using other database tools;

• it is conceptually simple and gives a ‘real’ measure (time spent in terms of
hours);

• no parameters with unclear physical meaning have to be set; and
• it handles heterogeneous time intervals.

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 173

Fig. 9.2 Probability surface with analysis.view_probability_grid_traj (a DEM is visualised in
the background)

Fig. 9.3 Spatial content of the database as seen from DB Manager in QGIS

174 F. Urbano et al.

On the other hand, it implicitly relies on a very simplified movement model (the
animal moves along the segment that connects two locations with a constant speed).

Figure 9.3 shows a picture of the spatial content of the database in QGIS (DB
Manager).

Dynamic Age Class

While age class is stored in the animals table with reference to the capture time, it can
change over time. If this information must be associated with each location (according
to the acquisition time), a dynamic calculation of the age class must be used. We
present here an example valid for roe deer. With a conservative approach, we can
consider that on 1 April of each year, all the animals that were fawns become year-
lings, and all the yearlings become adults. Adults remain adults. The function below
requires an animal id and an acquisition time as input. Then, it checks the capture date
and the age class at capture. Finally, it compares the capture time to the acquisition
time: if 1 April has been ‘crossed’ once or more, the age class is increased accordingly:

CREATE OR REPLACE FUNCTION tools.age_class(

 animal_id integer,

 acquisition_time timestamp with time zone)

RETURNS integer AS

$BODY$

DECLARE

 animal_age_class_code_capture integer;

 add_year integer;

 animal_date_capture date;

BEGIN

-- Retrieve the age class at first capture

animal_age_class_code_capture = (SELECT age_class_code FROM main.animals

WHERE animals_id = animal_id);

-- If the animal is already an adult then all locations will be adult

IF animal_age_class_code_capture = 3 THEN

 RETURN 3;

END IF;

-- In case the animal at capture was not an adult, the function checks if

the capture was before or after April.

-- In the second case, the age class will increase the April of the next

year.

animal_date_capture = (SELECT age_class_code FROM main.animals

IF EXTRACT(month FROM animal_date_capture) > 3 THEN

 add_year = 1;

ELSE

 add_year = 0;

END IF;

WHERE animals_id = animal_id);

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 175

 RETURN 3;

 ELSEIF acquisition_time > ((extract(year FROM animal_date_capture) + add_year)

|| '/4/1')::date THEN

 RETURN 2;

 ELSE

 RETURN 1;

 END IF;

END IF;

END;

 $BODY$

LANGUAGE plpgsql;

COMMENT ON FUNCTION tools.age_class(integer, timestamp with time zone)
IS 'This function returns the age class at the acquisition time of a location.

It has two input parameters: the id of the animal and the timestamp. According

 to the age class at first capture, the function increases the class by 1 every

 time the animal goes through a defined day of the year (1st April).';

 IF acquisition_time > ((extract(year FROM animal_date_capture) + add_year + 1)

|| '/4/1')::date THEN

-- If the animal was an yearling at capture, the function checks if it went

through an age class increase.

IF animal_age_class_code_capture = 2 THEN

 IF acquisition_time > ((extract(year FROM animal_date_capture) +

add_year)|| '/4/1')::date THEN

 RETURN 3;

 ELSE

 RETURN 2;

 END IF;

END IF;

-- If the animal was a fawn at capture, the function checks if it went

through two and then one age class increase.

IF animal_age_class_code_capture = 1 THEN

Unfortunately, all the animals in the database are adults, so no change in the age
class is possible. In any case, as an example of usage, we report the code to
retrieve the dynamic age class:

SELECT

 animals_id,

 acquisition_time,

 tools.age_class(animals_id, acquisition_time)

FROM main.gps_data_animals

ORDER BY animals_id, acquisition_time

LIMIT 10;

176 F. Urbano et al.

The result is

 animals_id | acquisition_time | age_class

------------+------------------------+-----------

 1 | 2005-10-18 22:00:54+02 | 3

 1 | 2005-10-19 02:01:23+02 | 3

 1 | 2005-10-19 06:02:22+02 | 3

 1 | 2005-10-19 10:03:08+02 | 3

 1 | 2005-10-20 22:00:53+02 | 3

 1 | 2005-10-21 02:00:48+02 | 3

 1 | 2005-10-21 06:00:53+02 | 3

 1 | 2005-10-21 10:01:42+02 | 3

 1 | 2005-10-21 14:03:11+02 | 3

 1 | 2005-10-21 18:01:16+02 | 3

Generation of Random Points

In some cases, it can be useful to generate a determined number of random points
in a given polygon (e.g. resource selection function, in order to get a representation
of the available habitat). This can be done using the database function reported
below. It requires a polygon (or multipolygon) geometry and the desired number
of points as input. The output is the set of points:

CREATE OR REPLACE FUNCTION tools.randompoints(

 geom geometry,

 num_points integer,

 seed numeric DEFAULT NULL)

RETURNS SETOF geometry AS

$$

DECLARE

 pt geometry;

 xmin float8;

 xmax float8;

 ymin float8;

 ymax float8;

 xrange float8;

 yrange float8;

 srid int;

 count integer := 0;

 bcontains boolean := FALSE;

 gtype text;

BEGIN

SELECT ST_GeometryType(geom)

INTO gtype;

IF (gtype != 'ST_Polygon') AND (gtype != 'ST_MultiPolygon') THEN

 RAISE EXCEPTION 'Attempting to get random point in a non polygon

END IF;

SELECT ST_XMin(geom), ST_XMax(geom), ST_YMin(geom), ST_YMax(geom),
INTO xmin, xmax, ymin, ymax, srid; ST_SRID(geom)

geometry';

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 177

 IF bcontains THEN

 count := count + 1;

 RETURN NEXT pt;

 END IF;

END LOOP;

RETURN;

END;

$$

LANGUAGE 'plpgsql';

COMMENT ON FUNCTION tools.randompoints(geometry, integer, numeric)

IS 'This function generates a set of random points into a given polygon (or

multipolygon). The number of points and the polygon must be provided as

input. A third optional parameter can define the seed, and thus generate a

consistent (random) set of points.';

SELECT xmax - xmin, ymax - ymin

INTO xrange, yrange;

IF seed IS NOT NULL THEN

 PERFORM setseed(seed);

END IF;

WHILE count < num_points LOOP

 SELECT

 ST_SetSRID(ST_MakePoint(

 xmin + xrange * random(), ymin + yrange * random()), srid)
 INTO pt;

 SELECT ST_Contains(geom, pt)

 INTO bcontains;

It can be used in a view to generate a set of points automatically whenever the
view is called. In this example, the study area is used as input geometry to generate
100 random points:

CREATE VIEW analysis.view_test_randompoints AS

 SELECT

 row_number() over() AS id,

 geom::geometry(point, 4326)

 FROM

 (SELECT

 tools.randompoints(

 (SELECT geom FROM env_data.study_area), 100)AS geom) a;
COMMENT ON VIEW analysis.view_test_randompoints

IS 'This view is a test that shows 100 random points (generated every time

that the view is called) into the boundaries of the first polygon stored in

the home_ranges_mcp table.';

The row_number() is added to generate a unique integer associated with each
point; otherwise, some of the client applications will not be able to deal with this
view. If you visualise the view in a GIS environment (e.g. in QGIS), you will
notice that the set of points changes every time that you refresh your GIS interface.
This is because the view generates a new set of points at every call. If you need to

178 F. Urbano et al.

consistently generate the same set of points for reproducibility, you can specify a
third parameter that defines the seed9 (a numeric value in the range from -1 to 1)
based on the PostgreSQL setseed10 function. The seed option allows you to
reproduce the same results while keeping the generation process random.
Changing the seed will generate another set of random locations. Another option is
to make the random points permanent and upload the result into a permanent table
that can then be processed further (e.g. intersected with environmental layers):

CREATE TABLE analysis.test_randompoints AS

 SELECT

 row_number() over() AS id,

 geom::geometry(point, 4326)

 FROM

 (SELECT

 tools.randompoints(

 (SELECT geom FROM env_data.study_area), 100)AS geom) a;

ALTER TABLE analysis.test_randompoints

 ADD CONSTRAINT test_randompoints_pk PRIMARY KEY(id);

COMMENT ON TABLE analysis.test_randompoints

IS 'This table is a test that permanently stores 100 random points into the

boundaries of the first polygon stored in the home_ranges_mcp table.';

A graphical illustration of the result is illustrated in Fig. 9.4.

Fig. 9.4 Random points generated in a polygon

9 http://en.wikipedia.org/wiki/Random_seed.
10 http://www.postgresql.org/docs/9.2/static/sql-set.html.

9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database 179

http://en.wikipedia.org/wiki/Random_seed
http://www.postgresql.org/docs/9.2/static/sql-set.html

References

Calenge C, Dray S, Royer-Carenzi M (2009) The concept of animals’ trajectories from a data
analysis perspective. Ecol Inform 4:34–41. doi:10.1016/j.ecoinf.2008.10.002

Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing animal movements using Brownian
bridges. Ecology 88:2354–2363. doi:10.1890/06-0957.1

Kranstauber B, Kays R, LaPoint SD, Wikelski M, Safi K (2012) A dynamic Brownian bridge
movement model to estimate utilization distributions for heterogeneous animal movement.
J Anim Ecol 81:738–746. doi:10.1111/j.1365-2656.2012.01955.x

180 F. Urbano et al.

http://dx.doi.org/10.1016/j.ecoinf.2008.10.002
http://dx.doi.org/10.1890/06-0957.1
http://dx.doi.org/10.1111/j.1365-2656.2012.01955.x

	9 Exploring Tracking Data: Representations, Methods and Tools in a Spatial Database
	Abstract
	Introduction
	Extraction of Statistics from the GPS Data Set
	A New Data Type for GPS Tracking Data
	Representations of Trajectories
	Regularisation of GPS Location Data Sets
	Interpolation of Missing Coordinates
	Detection of Sensors Acquisition Scheduling
	Representations of Home Ranges
	Geometric Parameters of Animal Movements
	An Alternative Representation of Home Ranges
	Dynamic Age Class
	Generation of Random Points
	References

